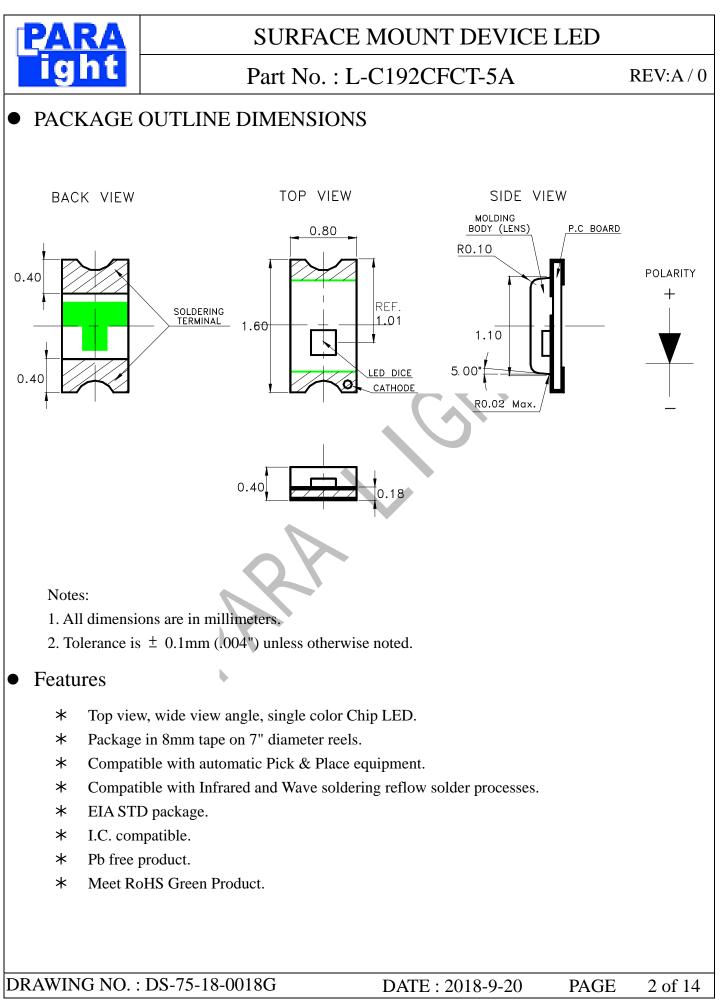


PARA LIGHT ELECTRONICS CO., LTD.

11F, No.8, Jiankang Rd,Zhonghe Dist,New Taipei City 253, TaiwanTel: 886-2-2225-3733Fax: 886-2-2225-4800E-mail: para@para.com.twhttp://www.para.com.tw

DATA SHEET

PART NO.: L-C192CFCT-5A



CUSTOMER'S APPROVAL : ____ DRAWING NO. : DS-75-18-0018G

_____ DCC : ____ DATE : 2018-9-20 PAGE

1 of 14

PARA-FOR-065

PARA-FOR-068

Part No. : L-C192CFCT-5A

REV:A/0

• Chip Materials

- * Dice Material : AlInGaP
- * Light Color : Orange
- * Lens Color : Water Clear

• Absolute Maximum Ratings(Ta= 25° C)

Symbol	Parameter	Rating	Unit
PD	Power Dissipation	75	mW
IPF	Peak Forward Current	80	mA
111	(1/10 Duty Cycle, 0.1ms Pulse Width)	80	IIIA
IF	Continuous Forward Current	25	mA
-	De-rating Linear From 25°C	0.25	mA/℃
VR	Reverse Voltage	5	V
ESD	Electrostatic Discharge Threshold(HBM)Note A	2000	V
Topr	Operating Temperature Range	-40 ~ +85	°C
Tstg	Storage Temperature Range	-40 ~ +85	°C

Note A :

HBM : Human Body Model. Seller gives no other assurances regarding the ability of to withstand ESD.

• Electro-Optical Characteristics(Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Luminous Intensity	IV	18	38	71	mcd	IF=5mA
Viewing Angle	2 ⁰ 1/2		130		deg	Note 2
Peak Emission Wavelength	λp		611		nm	Measurement @Peak
Dominant Wavelength	λd		605		nm	IF=5mA
Spectral Line Half-Width	Δλ		17		nm	
Forward Voltage	VF	1.7	1.8	2.2	V	IF =5mA
Reverse Current	IR			10	μA	VR = 5V

DRAWING NO. : DS-75-18-0018G

DATE : 2018-9-20 PAGE 3 of 14

Part No. : L-C192CFCT-5A

REV:A / 0

• Bin Code List

Luminous In	For		
Bin Code	Min	Max	Bin C
М	18	28	2
Ν	28	45	3
Р	45	71	4
			5
			6
	Bin Code M	Bin CodeMinM18N28	M 18 28 N 28 45

Forward Voltage(VF), Unit:V@5mA			
Bin Code	Min	Max	
2	1.7	1.8	
3	1.8	1.9	
4	1.9	2.0	
5	2.0	2.1	
6	2.1	2.2	

Tolerance of each bin are $\pm 15\%$

Tolerance of each bin are ± 0.1 Volt

Dominant Wavelength (Hue), Unit: nm@5mA				
Bin Code	Min	Max		
OA	600	605		
OB	605	610		

Tolerance of each bin are ± 1 nm

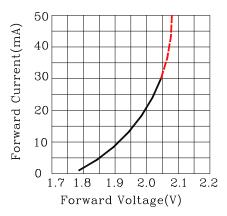
Notes:

- 1. Luminous intensity is measured with a light sensor and filter combination that proximities the CIE eye-response curve.
- 2. θ 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
- 4. Caution in ESD :

Static Electricity and surge damages the LED. It is recommended use a wrist band or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.

5. Major standard testing equipment by "Instrument System" Model : CAS140B Compact Array Spectrometer and "KEITHLEY" Source Meter Model : 2400.

DRAWING NO. : DS-75-18-0018G



Part No. : L-C192CFCT-5A

REV:A/0

• Typical Electro-Optical Characteristics Curves

(25°C Ambient Temperature Unless Otherwise Noted)

Fig.2 Forward Current vs.Forward Voltage

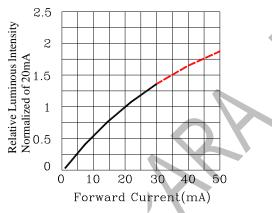
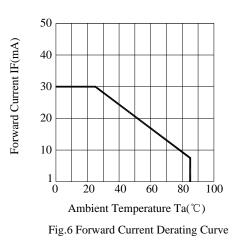
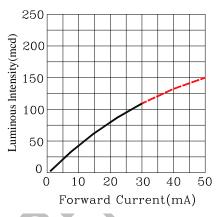
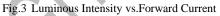





Fig.4 Relative Luminous Intensity vs.Forward Current

DRAWING NO. : DS-75-18-0018G

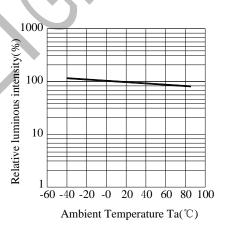
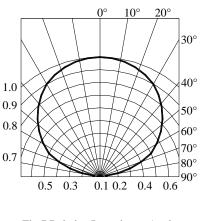
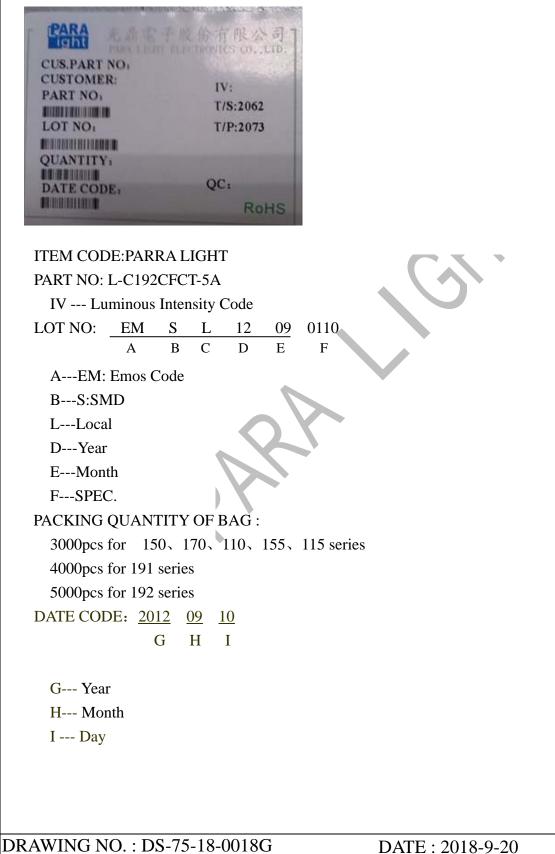
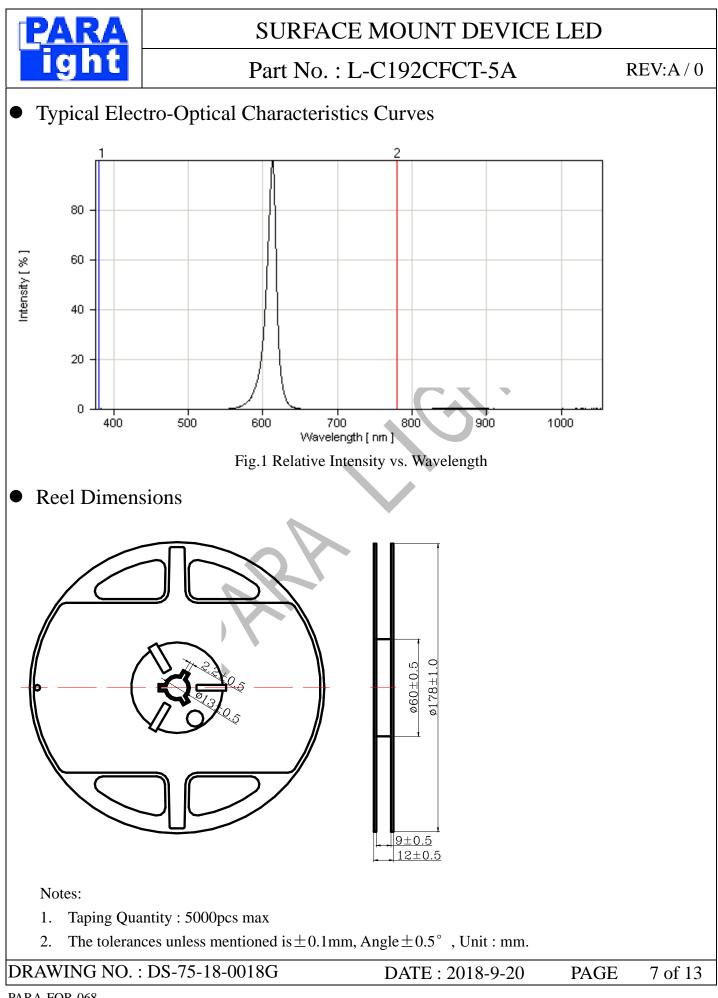
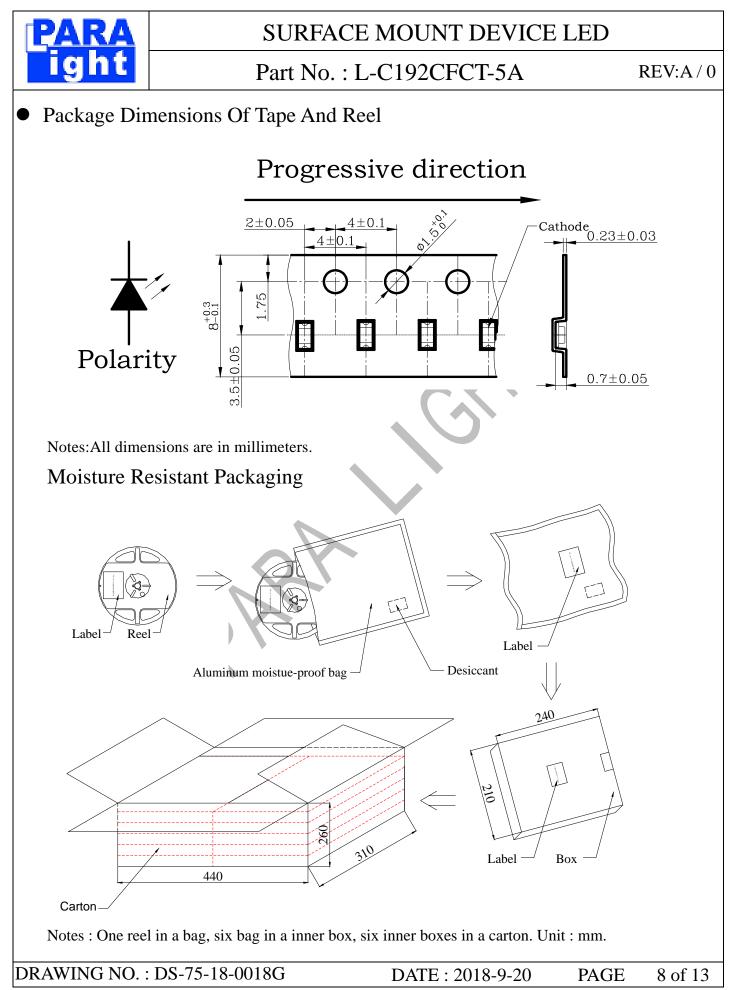



Fig.5 Luminous Intensity vs.Ambient Temperature


DATE : 2018-9-20 PAGE 5 of 14

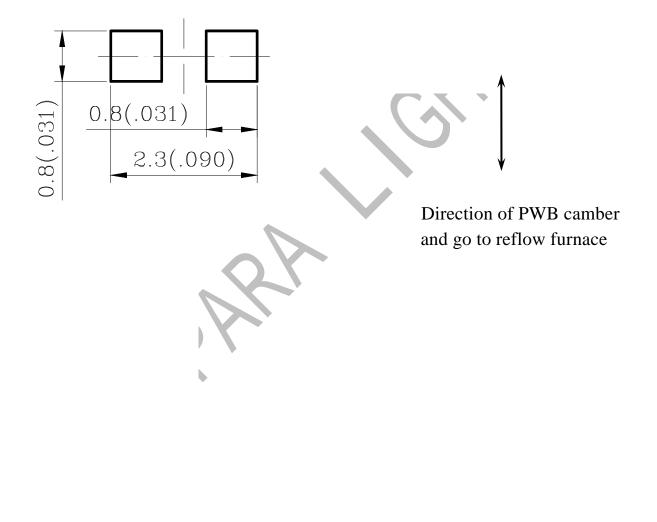


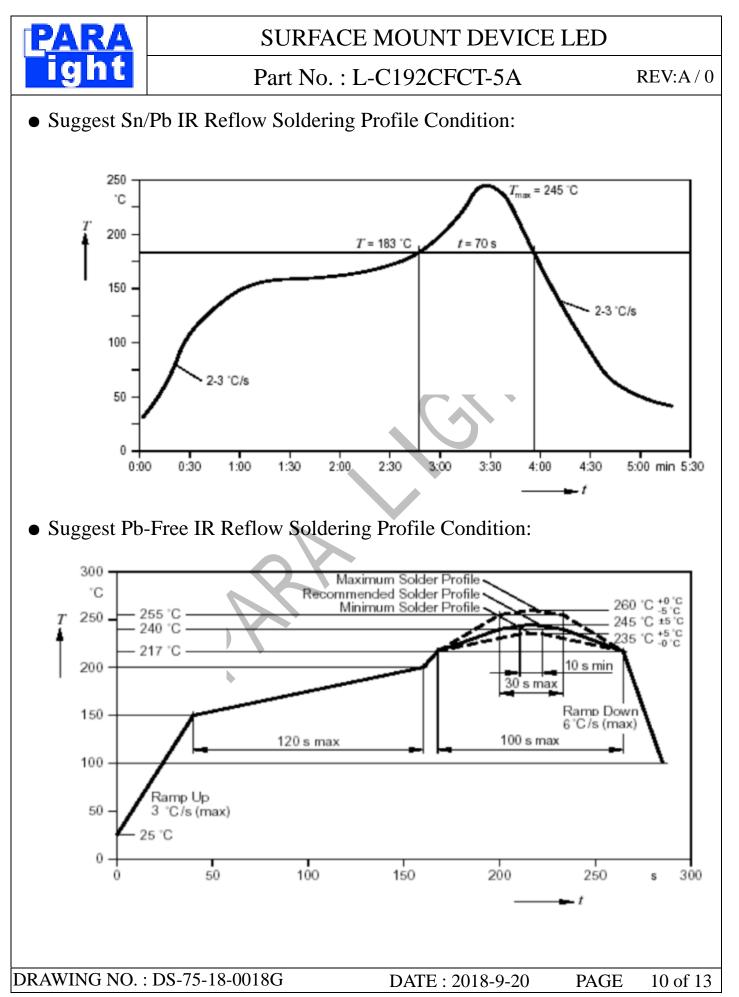
Part No. : L-C192CFCT-5A


REV:A/0

Label Explanation

PARA-FOR-068


Part No. : L-C192CFCT-5A


REV:A/0

• Cleaning

- * If cleaning is required, use the following solutions for less than 1 minute and less than 40° C.
- * Appropriate chemicals: Ethyl alcohol and isopropyl alcohol.
- Effect of ultrasonic cleaning on the LED resin body differs depending on such factors as the oscillator output, size of PCB and LED mounting method. The use of ultrasonic cleaning should be enforced at proper output after confirming there is no problem.

• Suggest Soldering Pad Dimensions

Part No. : L-C192CFCT-5A

REV:A / 0

• CAUTIONS

1. Application limitation :

The LED's described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household application).Consult PARA's sales in advance for information on application in which exceptional quality and reliability are required, particularly when the failure or malfunction of the LED's may directly jeopardize life or health (such as airplanes, automobiles, traffic control equipment, life support system and safety devices).

2.Storage :

Do not open moisture proof bag before the products are ready to use.

Before opening the package: The LEDs should be kept at 30° C or less and 90%RH or less.

After opening the package: The LED's floor life is 1 year under 30° C or less and 60% RH or less. If unused LEDs remain, it should be stored in moisture proof packages.

If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions.

Baking treatment: 60 ± 5 °C for 24 hours.

3.Soldering

Do not apply any stress to the lead frame during soldering while the LED is at high temperature. Recommended soldering condition.

Reflow Soldering :

Pre-heat 120~150°C, 120sec. MAX., Peak temperature : 240°C Max. Soldering time : 10 sec Max. Soldering Iron : (Not recommended)

Temperature 300°C Max., Soldering time : 3 sec. Max.(one time only), power dissipation of iron :

20W Max. use SN60 solder of solder with silver content and don't to touch LED lens when soldering. Wave soldering :

Pre-heat 100°C Max, Pre-heat time 60 sec. Max, Solder wave 260°C Max, Soldering time 5 sec. Max. preformed consecutively cooling process is required between 1st and 2nd soldering processes.

DRAWING NO. : DS-75-18-0018G

DATE : 2018-9-20 PAGE 11 of 13

Part No. : L-C192CFCT-5A

REV:A/0

4. Lead-Free Soldering

For Reflow Soldering :

- 1 $\$ Pre-Heat Temp:150-180 $^{\circ}$ C,120sec.Max.
- 2 Soldering Temp:Temperature Of Soldering Pot Over 230°C,40sec.Max.
- 3 ` Peak Temperature:260 $^\circ\!\mathrm{C}\,$ ' 5sec.
- 4 Reflow Repetition:2 Times Max.
- 5 ` Suggest Solder Paste Formula 93.3 Sn/3.1 Ag/3.1 Bi /0.5 Cu

For Soldering Iron (Not Recommended) :

- 1 · Iron Tip Temp:350°C Max.
- 2 Soldering Iron:30w Max.
- 3 Soldering Time:3 Sec. Max. One Time.

For Dip Soldering :

- 1 Pre-Heat Temp:150°C Max. 120 Sec. Max.
- 2 Bath Temp:265°C Max.
- 3 Dip Time:5 Sec. Max.
- 5. Drive Method

(A)Recommended circuit.

(B)The difference of brightness between LED's could be found due to the Vf-If characteristics of LED.

Part No. : L-C192CFCT-5A

REV:A/0

6.Reliability Test

Classification	Test Item	Test Condition	Reference Standard
Endurance Test	Operation Life	Ta= Under Room Temperature As Per Data Sheet Maximum Rating *Test Time= 1000HRS (-24HRS,+72HRS)*@20mA.	MIL-STD-750D:1026 (1995) MIL-STD-883D:1005 (1991) JIS C 7021:B-1 (1982)
	High Temperature High Humidity Storage	IR-Reflow In-Board, 2 Times Ta= 65±5°C,RH= 90~95% *Test Time= 1000HRS±2HRS	MIL-STD-202F:103B(1980) JIS C 7021:B-11(1982)
	High Temperature Storage	Ta= 105±5℃ Test Time= 1000HRS (-24HRS,72HRS)	MIL-STD-883D:1008 (1991) JIS C 7021:B-10 (1982)
	Low Temperature Storage	Ta= -55±5℃ *Test Time=1000HRS (-24HRS,72H RS)	JIS C 7021:B-12 (1982)
	Temperature Cycling	$105\pm5^{\circ}$ C $-55\pm5^{\circ}$ C 10 mins 10 mins 10 Cycles	MIL-STD-202F:107D (1980) MIL-STD-750D:1051(1995) MIL-STD-883D:1010 (1991) JIS C 7021:A-4(1982)
Environmental	Thermal Shock	IR-Reflow In-Board, 2 Times105±5℃-55℃±5℃10mins10mins100 Cycles	MIL-STD-202F:107D(1980) MIL-STD-750D:1051(1995) MIL-STD-883D:1011 (1991)
Test	Solder Resistance	Tsol= $260 \pm 5^{\circ}$ C Dwell Time= 10 ± 1 sec	MIL-STD-202F:210A(1980) MIL-STD-750D:2031(1995) JIS C 7021:A-1(1982)
	Solder ability	Tsol= $235 \pm 5^{\circ}$ C Immersion time 2±0.5 sec Immersion rate 25±2.5 mm/sec Coverage $\geq 95\%$ of the dipped surface	MIL-STD-202F:208D(1980) MIL-STD-750D:2026(1995) MIL-STD-883D:2003(1991) IEC 68 Part 2-20 JIS C 7021:A-2(1982)

7.Others:

The appearance and specifications of the product may be modified for improvement without notice.

DRAWING NO. : DS-75-18-0018G

DATE : 2018-9-20 PAGE 13 of 13