

DATASHEET

SMD Top View LEDs BL-2016NN1TBW-E1628D2630

Features

- Top View White LEDs
- Wide viewing angle 120°
- · Soldering methods: IR reflow soldering
- Pb-free
- The product itself will remain within RoHS compliant version.
- . Compliance with EU REACH.
- . Compliance Halogen Free .(Br <900 ppm ,Cl <900 ppm , Br+Cl < 1500 ppm).

Description

Due to the package design, 2016 has wide viewing angle, low power consumption and white LEDs are devices which are materialized by combing blue chips and special phosphor. This feature makes the LED ideal for light guide application.

Applications

- . Backlight for LCD Monitor/TV
- . Light pipe application
- . Indicator and backlight in office and family equipment
- . General use

Device Selection Guide

Chip Materials Emitted Color		Resin Color		
InGaN	Blue	Clear		

Absolute Maximum Ratings (Ta=25℃)

Parameter	Symbol	Rating	Unit	
Forward Current	l _F	30	mA	
Peak Forward Current (Duty 1/10 @10ms)	I _{FP}	60	mA	
Power Dissipation	Pd	93	mW	
Electrostatic Discharge(HBM)*1	ESD	2000	V	
Operating Temperature	T_{opr}	-40 ~ +85	$^{\circ}\!\mathbb{C}$	
Storage Temperature	T _{stg}	-40 ~ +90	$^{\circ}\!\mathbb{C}$	
Junction Temperature	Тj	110	$^{\circ}\!\mathbb{C}$	
Soldering Temperature	T_{sol}	Reflow Soldering : 260 $^{\circ}$ C for 10 sec. Hand Soldering : 350 $^{\circ}$ C for 3 sec.		

Notes: *1The products are sensitive to static electricity and must be carefully taken when handling products.

Electro-Optical Characteristics (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Luminous Intensity	lv	16		30	mW	I _F =20mA
Forward Voltage	V_{F}	2.6		3.1	V	I _F =20mA
Viewing Angle	2θ _{1/2}		120		deg	I _F =20mA

Notes:

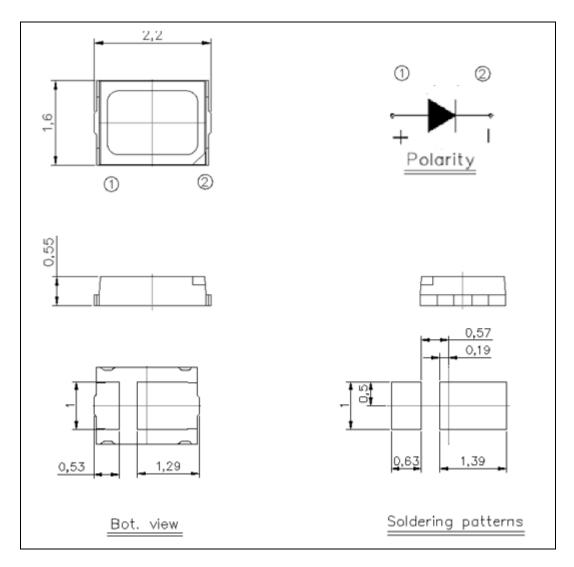
^{1.} Tolerance of Luminous flux: ±7%.

^{2.} Tolerance of Forward Voltage: ±0.05V.

Bin Range of Radiant Power

Bin Code	Min.	Max.	Unit	Condition
E16	16	18		
E18	18	20		
E20	20	22		
E22	22	24	mW	I _F =20mA
E24	24	26		
E26	26	28		
E28	28	30		

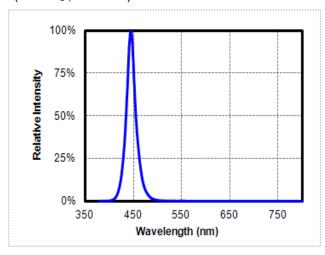
Note: Tolerance of Luminous flux: ±7%

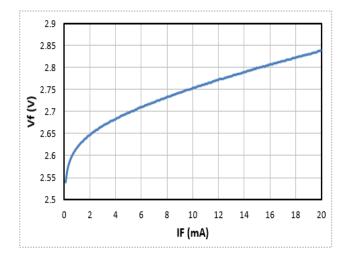

Bin Range of Forward Voltage

Bin Code	Min.	Max.	Unit	Condition
D26	2.6	2.7		
D27	2.7	2.8		
D28	2.8	2.9	V	I _F =20mA
D29	2.9	3.0		
D30	3.0	3.1		

Notes: Tolerance of Forward Voltage: ±0.05V

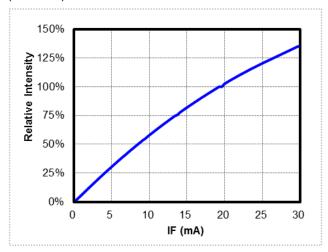
Package Outline Dimensions


Note: Tolerances unless dimension are ± 0.1 mm, unit = mm.

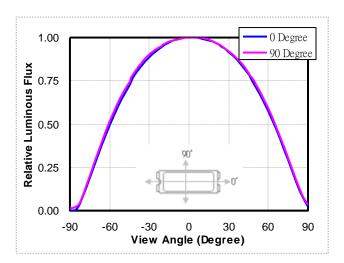

Typical Electro-Optical-Thermal Characteristics Curves

1. Spectrum Distribution

(Ta=25°C, I_F=20mA)

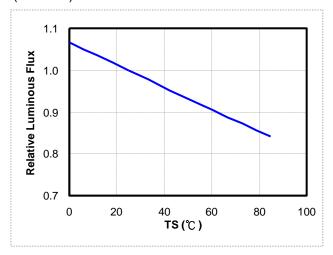


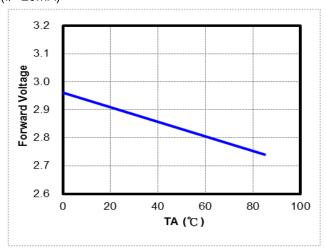
3. Relative Forward Voltage vs. Forward Current (Ta=25°C)


2. Relative Luminous Flux vs. Forward Current

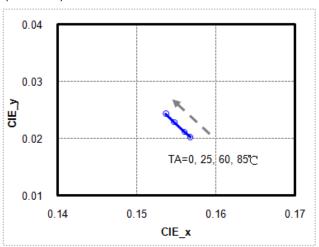
(Ta=25°ℂ)

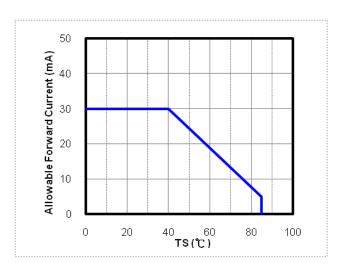
4. Radiation Diagram


(Ta=25°C, I_F=20mA)



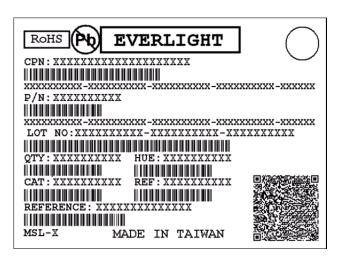
Typical Electro-Optical-Thermal Characteristics Curves


5. Relative Luminous Flux vs. Ambient Temperature (I_F=20mA)

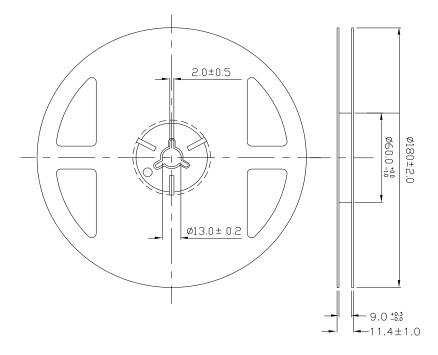

6. Forward Voltage vs. Ambient Temperature (I_F=20mA)

7. Chromaticity Coordinates vs. Ambient Temperature (I_F=20mA)

8. Forward Current De-rating Curve


Moisture Resistant Packing Materials

Label Explanation

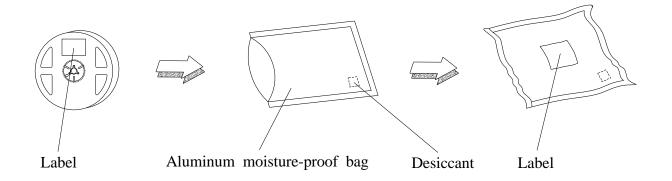

CAT: Luminous Flux Rank

HUE: Chromaticity Coordinates

REF: Forward Voltage Rank

Reel Dimensions

Note: Tolerances unless mentioned ±0.1mm. Unit = mm


Carrier Tape Dimensions: Loaded Quantity 250 up/500/1000/2000 pcs. Per Reel

Progress Direction

Note: The tolerances unless mentioned is ± 0.1 mm; Unit = mm

Moisture Resistant Packaging

Reliability Test Items and Conditions

The reliability of products shall be satisfied with items listed below.

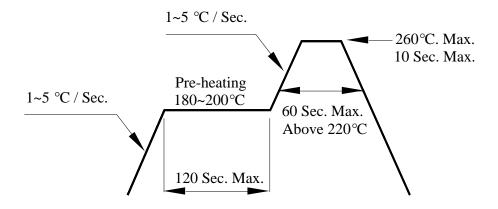
Confidence level: 90%

LTPD: 10%

No.	ltem	Test Conitio		Test Hours/ Times	Criteria (at std. IF)
INO.	item	Temp./ Humidity	IF (mA)	Test Hours/ Times	
1	Reflow Soldering	Temp.: 260°C± Max. 10 sec		2 time	△lv < ±10% △VF < ±10%
2	Temperature Cycle	-	100℃ 30min.	200 cycles	
3	Thermal Shock	-10°C ~ 20min. (<15sec.)	100°ℂ 20min.	200 cycles	
4	Low Temp. Storage	TA=-40°C		1000 hrs	
5	High Temp. Storage	TA=100°C		1000 hrs	
6	Temp. Humidity Storage	TA=60°C / 90%RH		1000 hrs	lv > 70%,
7	Steady State Operating Life of Low Temp.	TA=-40°C	20	1000 hrs	VF < 110%,
8	Steady State Operating Life Condition 1	TA=25°C / Room Hur	n. 20	1000 hrs	
9	Steady State Operating Life Condition 2	TA=60°C	20	1000 hrs	
10	Steady State Operating Life of High Temp.	TA=85°ℂ	5	1000 hrs	
11	Steady State Operating Life of High Humidity Heat	TA=60°ℂ/ 90%RH	20	1000 hrs	

Notes:

- 1. Sampling for each test item: 22 (pcs)
- 2. Test board: MCPCB board thickness=1.6mm, copper layer thickness=0.07mm, Rth j-a = 90°C/W.
- 3. Measurements are performed after allowing the LEDs to return to room temperature.



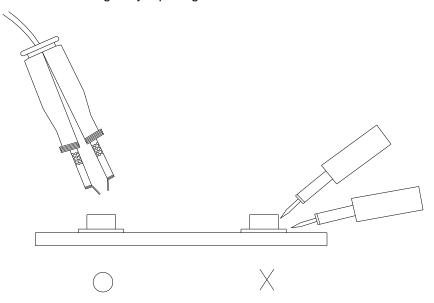
Precautions for Use

1. Over-current-proof

Customer must apply resistors for protection, otherwise slight voltage shift will cause big current change (Burn out will happen).

- 2. Storage
- 2.1 Do not open moisture proof bag before the products are ready to use.
- 2.2 Before opening the package: The LEDs should be used within one year and kept at 30℃ or less and 70%RH or less.
- 2.3 After opening the package: We recommend that the LED should be soldered quickly (within 3 days). The soldering condition is 30°C or less and 60%RH or less. If unused LEDs remain, it should be stored in moisture proof packages.
- 2.4 If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions. Baking treatment:60±5°C for 24 hours. (One time only)
- 3. Soldering Condition
- 3.1 Pb-free solder temperature profile

- 3.2 Reflow soldering should not be done more than two times.
- 3.3 When soldering, do not put stress on the LEDs during heating.
- 3.4 After soldering, do not warp the circuit board.



4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 350°C for 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

6. Handling Indications

During processing, mechanical stress on the surface should be minimized as much as possible. Sharp objects of all types should not be used to pierce the sealing compound.