EVERLIGHT

DATASHEET

Display Surface-mount ELSS-406UWWA/S290

Features

- Industrial standard size.
- Packaged in tape and reel for SMT manufacturing.
- The thickness is thinness than tradition display.
- Low power consumption.
- Categorized for luminous intensity.
- Pb free and RoHS compliant.

Description

- The ELSS-406UWWA/S290 is a 10.0mm (0.39") digit height seven-segment display.
- The display provides excellent reliability in bright ambient light.
- The device is made with white segments and gray surface.

Applications

- Home appliances
- Instrument panels
- · Digital readout displays

Device Selection Guide

Chip Materials	Emitted Color	Resin Color
InGaN	Pure White	White Diffusion

Absolute Maximum Ratings (Ta=25)

Parameter	Symbol	Rating	Unit
Reverse Voltage	V _R	5	V
Forward Current	I _F	25	mA
Peak Forward Current (Duty 1/10 @1KHz)	I _{FP}	100	mA
Power Dissipation	Pd	110	mW
Operating Temperature	T _{opr}	-40 ~ +105	
Storage Temperature	T _{stg}	-40 ~ +105	
Soldering Temperature (Soldering time 5 seconds)	T _{sol}	260	

Electro-Optical Characteristics (Ta=25)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Luminous Intensity ^{*1}	lv	30.0	67.0		mcd	I _F =10mA
Chromaticity Coordinates ^{*2}	x	0.270		0.310		— I _F =10mA
	У	0.222		0.343		
Forward Voltage ^{*2}	V _F		3.3	3.7	V	I _F =20mA
Reverse Current ^{*2}	I _R			50	μA	V _R =5V

Note:

1. Luminous Intensity is a average value which be measured one 7-segment.

2. The Chromaticity Coordinates data is SMD specification.

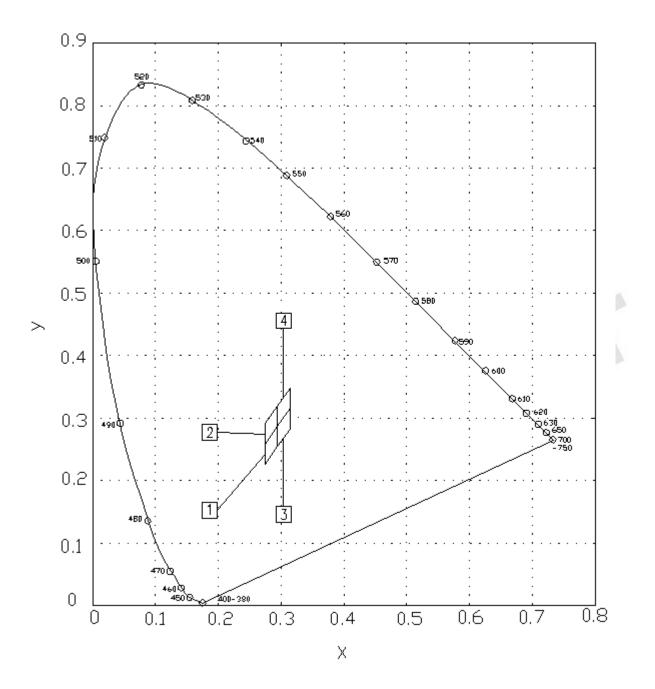
3. Tolerance of Luminous Intensity: ± 10 $\,\%$

4. Tolerance of Forward Voltage: ± 0.1V

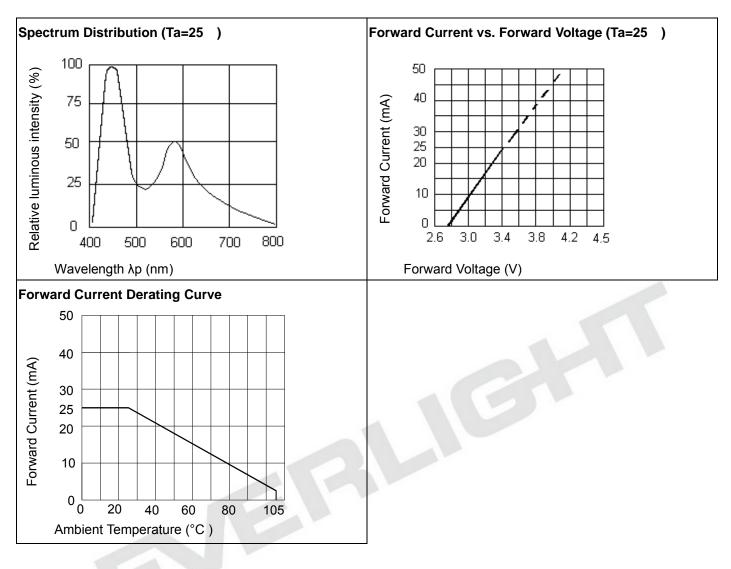
Bin Range of Luminous Intensity

Bin Code	Min.	Max.	Unit	Condition	
U	30.0	48.0	_		
V	42.0	67.0			
W	59.0	94.0	mcd	I _F =10mA	
X	83.0	133.0		·	
Y	116.0	186.0	_		

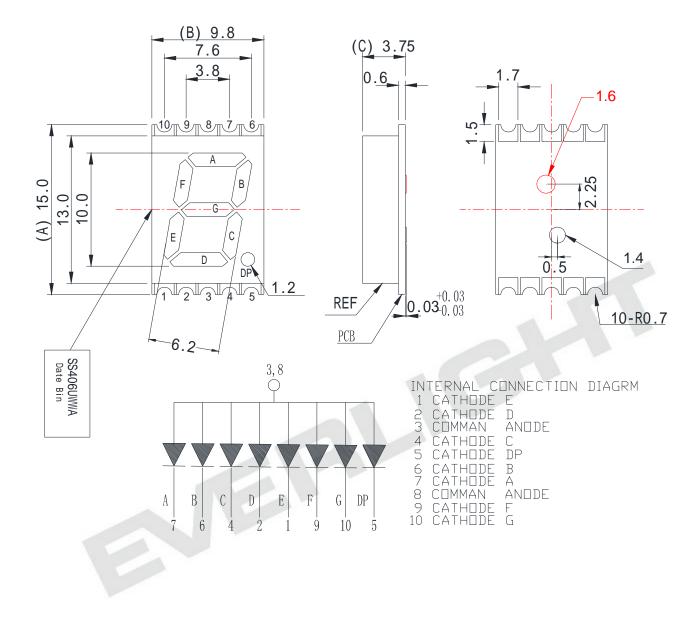
Chromaticity Coordinates Specifications for Bin Grading


Bin Code	CIE_x	CIE_y	Condition
1	0.270	0.222	
	0.270	0.254	
	0.290	0.284	
	0.290	0.250	
	0.270	0.254	
2	0.270	0.287	
2	0.290	0.315	
	0.290	0.283	I = 10m A
3	0.290	0.250	$I_F = 10 \text{mA}$
	0.290	0.283	
	0.310	0.311	
	0.310	0.278	
4	0.290	0.283	
	0.290	0.315	
	0.310	0.343	
	0.310	0.311	

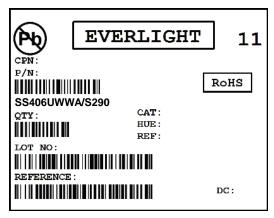
Notes:


1.The C.I.E. 1931 chromaticity diagram (Tolerance ±0.01).

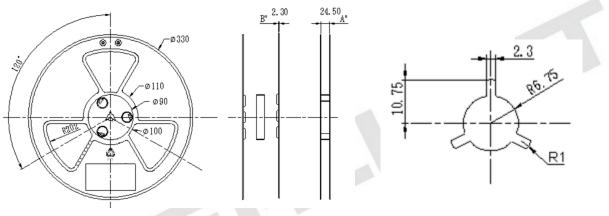
EVERLIGHT


CIE Chromaticity Diagram

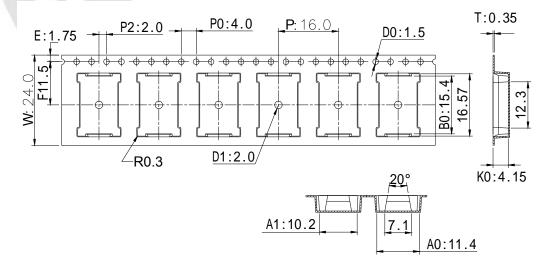
Typical Electro-Optical Characteristics Curves


Package Dimension & Internal Circuit Diagram

Note: Tolerances unless mentioned ±0.25mm. Unit = mm

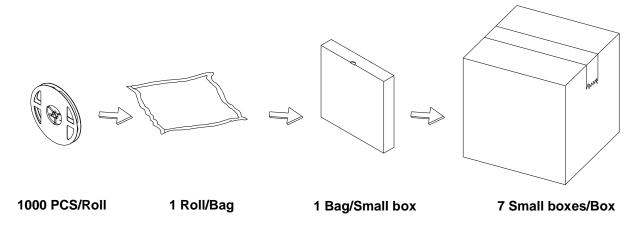

Packing Materials

Label Explanation



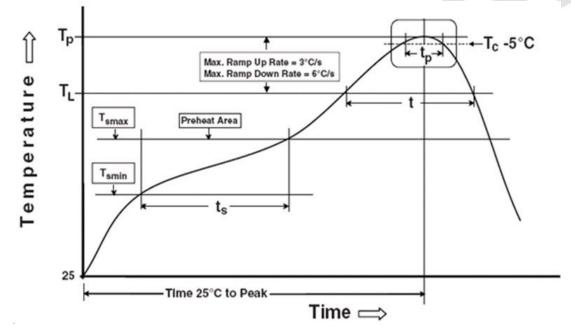
- CPN: Customer's Product Number
 P/N: Product Number
- QTY: Packing Quantity
- CAT: Luminous Intensity Rank
- HUE: Reference
- REF: Reference
- LOT No: Lot Number
- · DC: Year and Weekly
- REFERENCE: Volume Label code

Reel Dimensions



Carrier Tape Dimensions: Loaded Quantity 1000 PCS Per Reel

Note: Tolerances unless mentioned ±0.25mm. Unit = mm


Packing Process

Precautions for Use

1. Soldering Condition

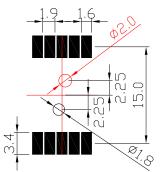
1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note:

Preheat

Temperature min (T_{smin}) Temperature max (T_{smax}) Time $(T_{smin} \text{ to } T_{smax}) (t_s)$ Average ramp-up rate $(T_{smax} \text{ to } T_p)$ Reference: IPC/JEDEC J-STD-020D

150 °C 200 °C 60-120 seconds 3 °C/second max.


Expired Period: Forever

Other

Liquidus Temperature (T_L)	217 °C
Time above Liquidus Temperature (t $_{L}$)	60-150 seconds
Peak Temperature (T _P)	260 °C
Time within 5 °C of Actual Peak Temperature: T_P - 5°C	30 seconds
Ramp- Down Rate from Peak Temperature	6 °C/second max.
Time 25°C to peak temperature	8 minutes max.
Reflow times	1 time

All parameters are maximum body case temperature values and cannot be considered as a soldering profile. The body case temperature was measured by soldering a thermal couple to the soldering point of LEDs.

1.2 (B) Recommend soldering pad

Application Restrictions

- 1. specification described in this document. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 3. These specification sheets include materials protected under copyright of EVERLIGHT Corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.
- 4. ESD (Electrostatic Discharge)
 - The products are sensitive to static electricity or surge voltage. ESD can damage a die and its reliability. When handling the products, the following measures against electrostatic discharge are strongly recommended:

Eliminating the charge Grounded wrist strap, ESD footwear, clothes, and floors Grounded workstation equipment and tools ESD table/shelf mat made of conductive materials

- Proper grounding is required for all devices, equipment, and machinery used in product assembly. Surge protection should be considered when designing of commercial products.
- If tools or equipment contain insulating materials such as glass or plastic, the following measures against electrostatic discharge are strongly recommended: Dissipating static charge with conductive materials
 Preventing charge generation with moisture
 Neutralizing the charge with ionizers
- 5. The LEDs should be operated with forward bias. The driving circuit must be designed so that the LEDs are not subjected to forward or reverse voltage while it is off. If reverse voltage is continuously applied to the LEDs, it may cause migration resulting in LED damage.