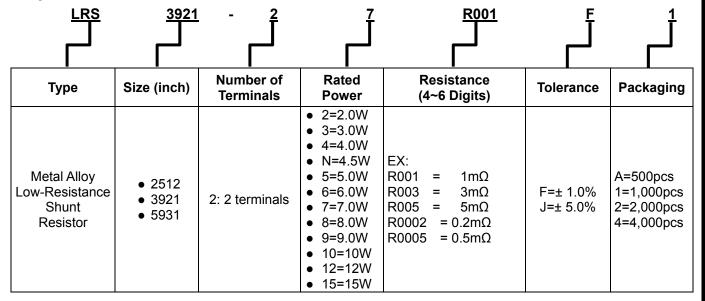
LRS Series Metal Alloy Low-Resistance Shunt Resistor Product Specifications (Automotive Grade)

Document No.	IE-SP-094
Released Date	2020/10/22
Page No.	1


1 Scope:

1.1 This specification is applicable to lead free and halogen free of RoHS directive for LRS Series metal alloy low-resistance shunt resistor.

- 1.2 This product is for automotive electronic application.
- 1.3 AEC-Q200 qualified, grade 1.

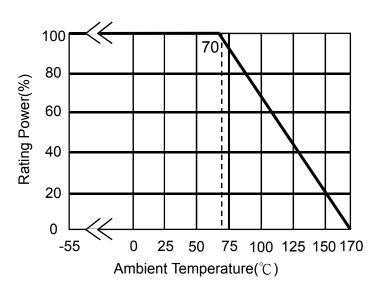
2 Explanation Of Part Numbers:

IE		QA	Remark	leave Den DATA Center	
Written	Checked	Approved	Signing	II I	Issue Dep. DATA Center.
V 16 35	27/1	10	73-12	IT'S NOT UNDER CONTROL FOR PDF FILE	
久入45多	70,004	INCAL-	美以類	PLS NOTE THE VERSION STATED	Series No. 60
		host -	12.1.10	Do not copy without permission	Series No.00

LRS Series Metal Alloy Low-Resistance Shunt Resistor Product Specifications (Automotive Grade)

Document No.	IE-SP-094
Released Date	2020/10/22
Page No.	2

3 Product Specifications:


Туре	# of Terminals	Max. Rating Power	Max. Rating Current	Max. Overload Current	T.C.R. (ppm/°C)	Resistance Range (mΩ) F (±1%); J (±5%)	Operating Temperature Range
		6W			±100	0.3 \ 0.5	
		5W			±100	0.3 \ 0.5 1 \ 2	
LRS2512	2	4W			±100	0.3 · 0.5 1 · 2 · 3	-55~170°C
		3W			±100	0.3 · 0.5 1 · 2 · 3	
		2W			±100	3	
		12W			±150	0.2	
		10W			±100	0.3	
					±150	0.2	
		9W			±100	0.3	
					±70	0.5	
		7W			±50	1.0 \ 1.5	
		6W			±50	2.0	
LRS3921	2				±150	0.2	
			Ir=√P/R	Io=√5P/R	±100	0.3	
		5W	Ir: Rating Current (A)	lo: Overload Current (A)	±70	0.5	
			P:Rating Power (W) R:R value(Ω)	P:Rating Power (W) R:R value(Ω)	±50	1.0 \ 1.5 \ 2.0 3.0 \ 4.0 \ 5.0	
		4.5W			±50	1.5	
		4W			±50	1.0 \ 2.0 \ 4.0	-55~170°C
		3W			±50	3.0 \ 4.0 \ 5.0	
		2W			±50	5.0	
		15W			±100	0.2	
		10W			±100	0.2 \ 0.3	
		9W			±50	1.0	
		8W			±75	0.5	
1.005024	2	7\^/			±100	0.2 \ 0.3	
LRS5931	2	7W			±50	1.0 \ 2.0	
		GVA			±75	0.5	
		6W			±50	3.0	
		5W			±50	1.0 \ 2.0 \ 3.0	
		4W			±50	3.0	

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Kemark	Do not copy without permission	Series No. 60

LRS Series Metal Alloy Low-Resistance Shunt Resistor Product Specifications (Automotive Grade)

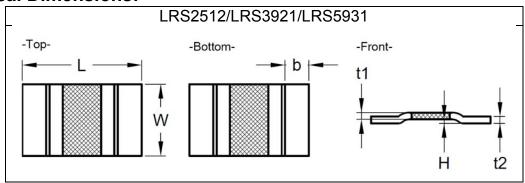
Document No.	IE-SP-094
Released Date	2020/10/22
Page No.	3

3.1 Power Derating Curve: Operating Temperature Range : - 55 ~+170 °C For resistors operated in ambient temperatures 70°C, power rating shall be derated in accordance with the curve below:

3.2 Rating Current:

The following equation may be used to determine the DC (Direct Current) or AC (Alternating Current) currents (RMS, root mean square value) of normal rated power. However, if the result value exceeds the highest current of regulated standards, the highest normal rated power is to be used. Remark:

 $I = \sqrt{D/D}$


I=Rating Current(A)
P= Rating Power(W)
R=Resistance(Ω)

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Komark	Do not copy without permission	Series No. 60

LRS Series Metal Alloy Low-Resistance Shunt Resistor Product Specifications (Automotive Grade)

Document No.	IE-SP-094
Released Date	2020/10/22
Page No.	4

4 Physical Dimensions:

_	Maximum Power Rating (Watts)	Resistance		Dimensions - in inches (millimeters)				
Туре		Range (mΩ)	L	w	Н	b	t1	t2
	3W/4W/5W/6W	0.3		0.127±0.01 (3.18±0.25)	0.014±0.006 (0.35±0.15)		0.038±0.006 (0.95±0.15)	0.038±0.006 (0.95±0.15)
	3W/4W/5W/6W	0.5					0.034±0.006 (0.85±0.15)	0.034±0.006 (0.85±0.15)
LRS2512	3W/4W/5W	1.0	0.254±0.01 (6.35±0.25)			0.045±0.01 (1.14.±0.25)	0.017±0.006 (0.42±0.15)	0.017±0.006 (0.42±0.15)
	3W/4W/5W	2.0					0.026±0.006 (0.66±0.15)	0.026±0.006 (0.66±0.15)
	2W/3W/4W	3.0					0.018±0.006 (0.44±0.15)	0.018±0.006 (0.44±0.15)
	12W/9W/5W	0.2					0.056±0.006 (1.42±0.15)	0.056±0.006 (1.42±0.15)
	10W/9W/5W	0.3	0.394±0.010 (10.00±0.254)		0.0197±0.004 (0.50±0.1)	0.0709±0.024 (1.80.±0.6)	0.056±0.006 (1.42±0.15)	0.056±0.006 (1.42±0.15)
	9W/5W	0.5					0.033±0.006 (0.84±0.15)	0.033±0.006 (0.84±0.15)
	7W/5W	1.0		0.205±0.010 (5.20±0.254)			0.017±0.006 (0.43±0.15)	0.017±0.006 (0.43±0.15)
LRS3921		1.5					0.036±0.006 (0.91±0.15)	0.036±0.006 (0.91±0.15)
	6W/5W	2.0					0.027±0.006 (0.69±0.15)	0.027±0.006 (0.69±0.15)
	5W/3W	3.0					0.018±0.006 (0.45±0.15)	0.018±0.006 (0.45±0.15)
	5W/4.5W/4W/3W	4.0					0.014±0.006 (0.35±0.15)	0.014±0.006 (0.35±0.15)
	5W/3W/2W	5.0					0.011±0.006 (0.27±0.15)	0.011±0.006 (0.27±0.15)
	15W/10W/7W	0.2					0.056±0.006 (1.42±0.15)	0.056±0.006 (1.42±0.15)
	10W/7W	0.3					0.037±0.006 (0.94±0.15)	0.037±0.006 (0.94±0.15)
L DOEGO	9W/7W/5W	1.0	0.591±0.010	0.305±0.010	0.0216±0.004	0.1575±0.024 (4.00.±0.6)	0.036±0.006 (0.91±0.15)	0.036±0.006 (0.91±0.15)
LRS5931	8W/6W	0.5	(15.00±0.254)	(7.75±0.254)	(0.55±0.1)		0.022±0.006 (0.56±0.15)	0.022±0.006 (0.56±0.15)
	7W/5W	2					0.018±0.006 (0.46±0.15)	0.028±0.006 (0.70±0.15)
	6W/5W/4W	3					0.012±0.006 (0.31±0.15)	0.020±0.006 (0.50±0.15)

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Remark	Do not copy without permission	Series No. 60

LRS Series Metal Alloy Low-Resistance Shunt Resistor Product Specifications (Automotive Grade)

Document No.	IE-SP-094
Released Date	2020/10/22
Page No.	5

4.1 Material of Alloy

Туре	Watts	Material	Resistance
	6.0		0.3mΩ \ 0.5mΩ
	5.0	0	$0.3\text{m}\Omega \cdot 0.5\text{m}\Omega \cdot 1.0\text{m}\Omega$
	4.0	Copper-Manganese Alloy	$0.3\text{m}\Omega \cdot 0.5\text{m}\Omega \cdot 1.0\text{m}\Omega$
LRS2512	3.0		$0.3\text{m}\Omega \cdot 0.5\text{m}\Omega \cdot 1.0\text{m}\Omega$
LR32312	5.0		2.0mΩ
	4.0	llana Obanansiana Alamainana Allan	2.0mΩ · 3.0mΩ
	3.0	Iron-Chromium Aluminum Alloy	2.0mΩ · 3.0mΩ
	2.0		3.0mΩ
	12.0		0.2mΩ
	10.0		0.3mΩ
	9.0	Copper-Manganese Alloy	$0.2\text{m}\Omega \cdot 0.3\text{m}\Omega \cdot 0.5\text{m}\Omega$
	7.0	Copper-Manganese Alloy	1.0mΩ
	5.0		$0.2\text{m}\Omega \cdot 0.3\text{m}\Omega \cdot 0.5\text{m}\Omega$
			1.0mΩ
LRS3921	7.0		1.5mΩ
LNOS921	6.0		2.0mΩ
	5.0	Iron-Chromium Aluminum Alloy	$1.5\text{m}\Omega \cdot 2.0\text{m}\Omega \cdot 3.0\text{m}\Omega \cdot$
			4.0mΩ \ 5.0mΩ
	4.5		1.5mΩ
	4.0		$1.0\text{m}\Omega \cdot 2.0\text{m}\Omega \cdot 4.0\text{m}\Omega$
	3.0		$3.0\text{m}\Omega \cdot 4.0\text{m}\Omega \cdot 5.0\text{m}\Omega$
	2.0		5.0mΩ
	15.0	Copper-Manganese Alloy	0.2mΩ
	10.0	Copper-Manganese Alloy	$0.2m\Omega \cdot 0.3m\Omega$
	9.0	Iron-Chromium Aluminum Alloy	1.0mΩ
	8.0		0.5 m Ω
LRS5931	7.0	Copper-Manganese Alloy	$0.2m\Omega \cdot 0.3m\Omega$
LKOOSSI	6.0		0.5mΩ
	7.0		1.0mΩ \ 2.0mΩ
	6.0	Iron-Chromium Aluminum Alloy	3.0mΩ
	5.0	Hon-Chromium Aluminum Alloy	$1.0\text{m}\Omega \cdot 2.0\text{m}\Omega \cdot 3.0\text{m}\Omega$
	4.0		3.0mΩ

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
	Do not copy without permission	Series No. 60

LRS Series Metal Alloy Low-Resistance Shunt Resistor Product Specifications (Automotive Grade)

Document No.	IE-SP-094
Released Date	2020/10/22
Page No.	6

5 Reliability Performance:

5.1 Electrical Performance:

Test Item	Conditions of Test	Test Limits
Flootrical	• TCR (ppm/°C) =(R2-R1) R1 (T2-T1) X 10 ⁶	Refer to Paragraph 3. general specifications
Electrical Characterization	R1: resistance of room temperature	
(TCR)	 R2: resistance of 150 °C 	
(1011)	T1: Room temperature	
	T2: Temperature at 150 °C	
	 Refer to JIS C 5201-1 4.8 	
	Applied Overload for 5 seconds and release the load for	ΔR±1.0%
	about 30 minutes, then measure its resistance variance	
	rate. (Overload condition refer to below):	
Short Time	Type # of rated power	
Overload	LRS2512	
	LRS3921 5 times	
	LRS5931	
	Refer to JIS C 5201-1 4.13	

5.2 Mechanical /Constructional Performance:

Test Item	Conditions of Test	Test Limits
Resistance to Solder Heat	The tested resistor be immersed 25 mm/sec into molten solder of 260±5°C for 10±1secs. Then the resistor is left in the room for 1 hour, and measured its resistance variance rate. Refer to MIL-STD-202 Method 210	ΔR±1.0%
Solderability	Add flux into tested resistors, immersion into solder bath in temperature 245±5 $^{\circ}$ C for 3±0.5secs. Refer to J-STD-002	Solder coverage over 95%
Vibration	The resistor shall be mounted by its terminal leads to the supporting terminals on the solid table. The entire frequency range :from 10 Hz to 55 Hz and return to 10 Hz, shall be transferred in 1 min. Amplitude : 1.5mm This motion shall be applied for a period of 4 hours in each 3 mutually perpendicular directions (a total of 12hrs) Refer to MIL-STD-202 Method 204	ΔR±1.0%
Mechanical Shock	Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks). Peak value(g's) 100 Duration(ms) 6 waveform Half-sine Velocity change(ft/sec) 12.3 Refer to MIL-STD-202 Method 213	ΔR ±0.5%

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.	
	Do not copy without permission	Series No. 60	

LRS Series Metal Alloy Low-Resistance Shunt Resistor Product Specifications (Automotive Grade)

Document No.	IE-SP-094
Released Date	2020/10/22
Page No.	7

5.3 Environmental Performance:

Test Item	Conditions of Test	Test Limits
High Temperature Exposure	Put tested resistor in chamber under temperature 170±5°C for 1,000 hours. Then leaving the tested resistor in room temperature for 60 minutes , and measure its resistance variance rate. Refer to MIL-STD-202 Method 108	ΔR±1.0%
Temperature Cycling	Put the tested resistor in the chamber under the temperature cycling which shown in the following table shall be repeated 1,000 times consecutively. Then leaving the tested resistor in the room temperature for 60 minutes, and measure its resistance variance rate. Testing Condition Lowest Temperature -55 +0/-10°C Highest Temperature 150 +10/-0°C Refer to JESD22 Method JA-104	ΔR±1.0%
Bias Humidity	Put the tested resistor in chamber under 85± 5°C and 85± 5%RH with 10% bias and load the rated current for 90 minutes on, 30 minutes off, total 1,000 hours. Then leaving the tested resistor in room temperature for 60 minutes, and measure its resistance variance rate. Refer to MIL-STD-202 Method 103	ΔR±1.0%

5.4 Operational Life Endurance:

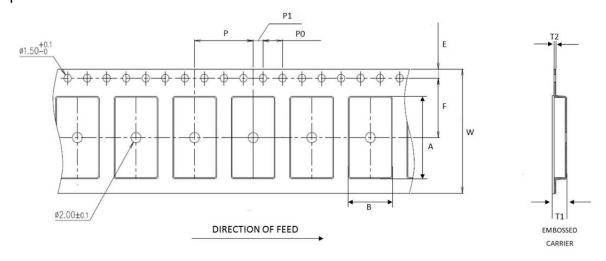
Test Item	Conditions of Test	Test Limits
Operational Life	Put the tested resistor in chamber under temperature 70± 2°C and load the rated current for 90 minutes on 30 minutes off, total 1000 hours. Then leaving the tested resistor in room temperature for 60 minutes, and measure its resistance variance rate. Refer to MIL-STD-202 Method 108	ΔR±1.0%

6 Inductance

6.1 Inductance characteristics: <5nH(Circuit frequency is below 1MHz)

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
	Do not copy without permission	Series No. 60

LRS Series Metal Alloy Low-Resistance Shunt Resistor Product Specifications (Automotive Grade)


Document No.	IE-SP-094
Released Date	2020/10/22
Page No.	8

7 Measurement Point:

Bottom electrode	Unit: mm				
<u></u> Α →	DIM Type	Α	В		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LRS2512	5.80 ±0.05	1.40±0.05		
	LRS3921	8.00±0.05	2.40±0.05		
Current Terminal Voltage Terminal	LRS5931	11.00±0.05	5.10±0.05		

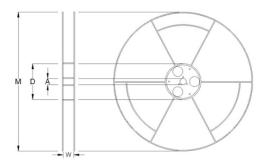
8 Taping specifications:

8.1 Tape Dimensions:

Unit: mm

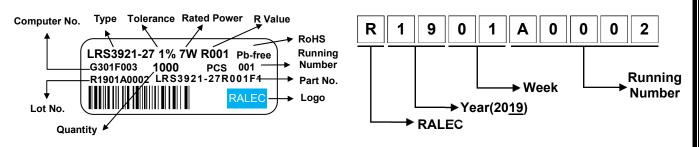
DIM Item	mΩ	Α	В	W	Е	F	T1	T2	Р	P0	10*P0	P1
LRS2512	0.3 \ 0.5 \ 2	6.7±0.1	3.58±0.1	12.3(Max.)	1.75±0.1	5.5±0.1	1.92(Max.)	0.3(Max.)	8.0±0.1	4.0±0.1	40.0±0.2	2.0±0.1
LK52512	1 \ 3	6.7±0.1	3.58±0.1	12.3(Max.)	1.75±0.1	5.5±0.1	1.54(Max.)	0.3(Max.)	4.0±0.1	4.0±0.1	40.0±0.2	2.0±0.1
LRS3921	All	10.5±0.2	5.7±0.2	16.0±0.2	1.75±0.1	7.5±0.1	2.3±0.1	0.28±0.05	8.0±0.1	4.0±0.1	40.0±0.2	2.0±0.1
LRS5931	All	15.6.±0.2	8.3±0.2	24.0±0.2	1.75±0.1	11.5±0.1	2.3±0.1	0.28±0.05	12.0±0.1	4.0±0.1	40.0±0.2	2.0±0.1

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Remark	Do not copy without permission	Series No. 60


LRS Series Metal Alloy Low-Resistance Shunt Resistor Product Specifications (Automotive Grade)

Document No.	IE-SP-094	
Released Date	2020/10/22	
Page No.	9	

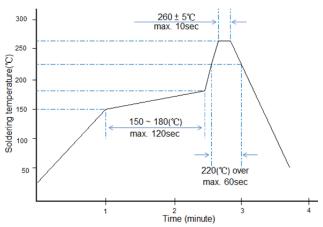
8.2 Packaging model:


		Max. Packaging Quantity (pcs/reel)		
Туре	Tape width	Embossed Plastic Type		
		4mm pitch	8mm pitch	12mm pitch
LRS2512 (0.3 \ 0.5 \ 2mΩ)	12mm		2000	
LRS2512 (1 · 3mΩ)	12mm	4000		
LRS3921	16mm		1000	
LRS5931	24mm			500

8.3 Reel Dimensions:

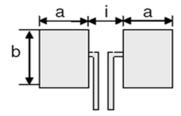
Reel Type / Tape	W	M	Α	D
7" reel for 12 mm tape	13.8 ± 0.5	178 ± 2.0	13.5 ± 0.5	80.0 ± 1.0
7" reel for 16 mm tape	17.4 ± 1.0	178 ± 2.0	13.20 ± 0.5	60.0 ± 1.0
7" reel for 24 mm tape	25.0 ± 1.0	170 £ 2.0	13.20 ± 0.5	00.0 ± 1.0

8.4 Label:


Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Roman	Do not copy without permission	Series No. 60

LRS Series Metal Alloy Low-Resistance Shunt Resistor Product Specifications (Automotive Grade)

Document No.	IE-SP-094
Released Date	2020/10/22
Page No.	10


9 Technical note (This is for recommendation, please customer perform adjustment according to actual application)

- 9.1 Recommend soldering method:
 - 9.1.1 This product is applicable to IR-reflow process only.(Infrared Reflow)
- 9.2 Typical examples of soldering processes that provides reliable joints without any damage are given in below:

Recommended IR Reflow Soldering Profile MEET J-STD-020D

9.3 Recommend Land Pattern:

Type	Dimensions - in millimeters			
Type	а	b	i	
LRS2512	1.8	3.4	3.4	
LRS3921	2.70	6.20	5.60	
LRS5931	5.20	8.75	5.60	

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
	Do not copy without permission	Series No. 60

LRS Series Metal Alloy Low-Resistance Shunt Resistor Product Specifications (Automotive Grade)

Document No.	IE-SP-094
Released Date	2020/10/22
Page No.	11

9.4 Automobile Electronic Application:

This specification is for automobile electronic use. RALEC will take no responsibility if any damage, cost or loss occurs when the product has been used in any special circumstances.

9.5 Environment Precautions:

If consumer intends to use our company product in special environment or condition (including but not limited to those mentioned below), then will need to make individual recognition of product features and reliability accordingly.

- (a) Used in high temperature and humidity environment
- (b) Exposed to sea breeze or other corrosive gas, such as Cl2 \ H2S \ NH3 \ SO2 and NO2.
- (c) Used in non-verified liquids including water, oil, chemical and organic solvents.
- (d) Using non-verified resin or other coating material to seal or coat our Company product.
- (e) After soldering, it is necessary to use water-soluble detergents to clean residual solder fluxes, even though no-clean fluxes are recommended.

9.6 Momentary Overload Precautions:

The product might be out of function when momentary overloaded. Please make sure to avoid momentary overloading while using and preserving.

9.7 Operation and Processing Precautions:

- (a) Avoid damage to the edge of resistor and protective layer caused by mechanical stress.
- (b) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (c) Make sure the power rating is under the limit when using the resistor. When power rating is over the limit, the resister will be overloaded. There might be machinery damage due to the climbing temperature.
- (d) If the resister will be exposed under massive impact load (shock wave) in a short period of time, the working environment must be set up well before use.
- (e) Please make evaluation and confirmation when the product is well used in your company and have a through consideration of it's fail-safe design to ensure the system safety.

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep.DATA Center.
	Do not copy without permission	Series No. 60

LRS Series Metal Alloy Low-Resistance Shunt Resistor Product Specifications (Automotive Grade)

Document No.	. IE-SP-094	
Released Date	2020/10/22	
Page No.	12	

10 Storage and Transportation requirement:

- 10.1 The temperature condition must be controlled at 25±5°C, the R.H. must be controlled at 60±15%. The stock can maintain quality level in one year.
- 10.2 Please avoid the mentioned harsh environment below when storing to ensure product performance and its' weldability. Places exposed to sea breeze or other corrosive gas, such as Cl2 \ H2S \ NH3 \ SO2 and NO2.
- 10.3 When the product is moved and stored, please ensure the correct orientation of the box. Do not drop or squeeze the box. Otherwise, the electrode or the body of the product may be damaged.

11 Attachments

11.1 Document Revise Record (QA-QR-027)

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Kemark	Do not copy without permission	Series No. 60

LRS Series Metal Alloy Low-Resistance Shunt Resistor Product Specifications (Automotive Grade)

Document No.	IE-SP-094	
Released Date	2020/10/22	
Page No.	13	

Legal disclaimer

RALEC, its distributors and agents (collectively, "RALEC"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. RALEC may make changes, modifications and/or improvements to product related information at any time and without notice.

RALEC makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, RALEC disclaims (i) any and all liability arising out of the application or use of any RALEC product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

RALEC defined this product is for general electrical use, not design for any application for automotive electrical, life-saving or life support equipment, or any application which may inflict casualties if RALEC product failure occurred. When consumer is using or selling products of RALEC without having discussion with the sales representatives and specifically stated the applicability mentioned above in a written form, then the client need to take a full responsibility and agree to protect RALEC from punishment and damage.

Information provided here is intended to indicate product specifications only. RALEC reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by ECN.

Remark	IT'S NOT UNDER CONTROL FOR PDF FILE PLS NOTE THE VERSION STATED	Issue Dep. DATA Center.
Kemark	Do not copy without permission	Series No. 60