<u>SCOPE</u>

This specification describes AF0100 to AF2512 chip resistors with anti-sulfuration capabilities.

APPLICATIONS

- Industrial Equipment
- Power Application
- Networking Application
- High-end Computer & Multimedia Electronics in high sulfur environment
- Automotive electronics

FEATURES

- AEC-Q200 qualified
- Superior resistance against sulfur containing atmosphere
- Halogen free product and production
- RoHS compliant
- Reduces environmentally hazardous waste
- High component and equipment reliability
- Saving of PCB space
- Moisture sensitivity level: MSL I
- 50ppm available

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AF XXXX X X X XX XXXX L

(1) (2) (3) (4) (5) (6) (7)

(I) SIZE

0100/0201/0402/0603/0805/1206/1210/1218/2010/2512

(2) TOLERANCE

 $D = \pm 0.5\%$

 $F = \pm 1\%$

 $J = \pm 5\%$ (for jumper ordering, use code of J)

(3) PACKAGING TYPE

R = Paper taping reel

K = Embossed plastic tape reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec
- $E = \pm 50 \text{ ppm/°C}$

(5) TAPING REEL

- 07 = 7 inch dia. Reel
- 13 = 13 inch dia. Reel

7W = 7 inch dia. Reel & 2 x standard power

(6) RESISTANCE VALUE

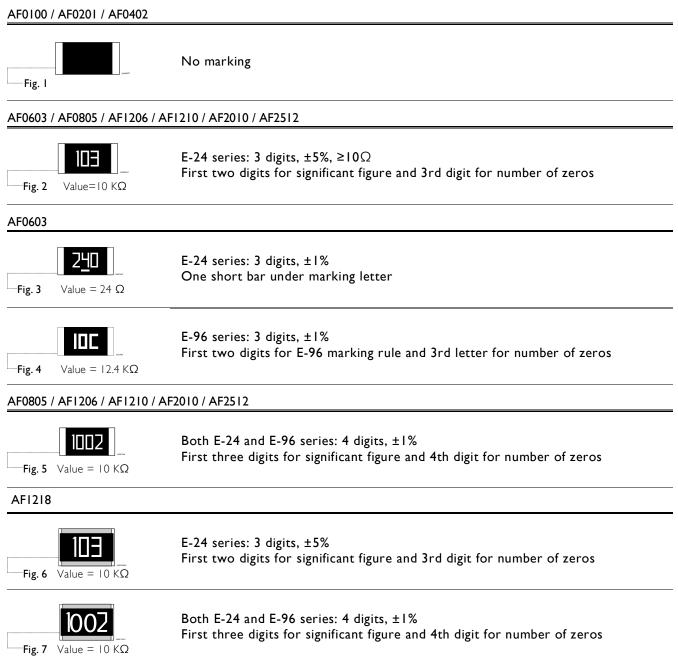
There are $2\sim4$ digits indicated the resistance value. Letter R/K/M is decimal point. Detailed resistance rules are displayed in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is system default code for ordering only (Note)

Resistance rule of global part

number Resistance coding r	ule Example
XRXX (1 to 9.76 Ω)	R = Ω R5 = .5 Ω 9R76 = 9.76 Ω
XXRX	IOR = IO Ω
(10 to 97.6 Ω)	97R6 = 97.6 Ω
XXXR (100 to 976 Ω)	100R = 100 Ω
XKXX	ικ = 1,000 Ω
(1 to 9.76 KΩ)	9K76 = 9760 Ω
XMXX	$IM = I,000,000 \Omega$
(1 to 9.76 M Ω)	9M76= 9,760,000 Ω


ORDERING EXAMPLE

The ordering code for an AF0402 chip resistor, value 100 K Ω with ±1% tolerance, supplied in 7-inch tape reel with 10Kpcs quantity is: AF0402FR-07100KL.

NOTE

- All our R-Chip products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process"
- 2. On customized label, "LFP" or specific symbol can be printed

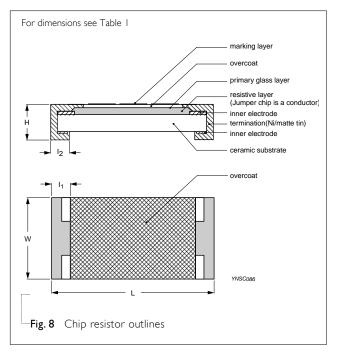
MARKING

ΝΟΤΕ

For further marking information, please see special data sheet "Chip resistors marking". Marking of AF series is the same as RC series

CONSTRUCTION

The resistors are constructed on top of a high grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a glass.


The composition of the glaze is adjusted to give the approximate required resistance value and laser trimming of this resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations (Ni / matte tin) are added. See fig.8

DIMENSIONS

Table I For outlines see fig. 8

TYPE	L (mm)	W (mm)	H (mm)	l⊨(mm)	l₂ (mm)
AF0100	0.40±0.02	0.20±0.02	0.14±0.02	0.10±0.03	0.10±0.03
AF0201	0.60±0.03	0.30±0.03	0.23±0.03	0.12±0.05	0.15±0.05
AF0402	1.00±0.05	0.50±0.05	0.35±0.05	0.20±0.10	0.25±0.10
AF0603	1.60±0.10	0.80±0.10	0.45±0.10	0.25±0.15	0.25±0.15
AF0805	2.00±0.10	1.25±0.10	0.50±0.10	0.35±0.20	0.35±0.20
AF1206	3.10±0.10	1.60±0.10	0.55±0.10	0.45±0.20	0.50±0.20
AF1210	3.10±0.10	2.60±0.15	0.57±0.10	0.45±0.20	0.50±0.20
AF1218	3.10±0.10	4.60±0.10	0.57±0.10	0.45±0.20	0.50±0.20
AF2010	5.00±0.10	2.50±0.15	0.57±0.10	0.55±0.20	0.55±0.20
AF2512	6.35±0.10	3.20±0.15	0.57±0.10	0.60±0.20	0.60±0.20

OUTLINES

Chip Resistor Surface Mount AF SERIES 0100 to 2512

ELECTRICAL CHARACTERISTICS

Table 2

		CHARACTERISTICS								
TYPE	POWER	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria		
AF0100	1/32 W	–55 ℃ to 125℃	15V	30V	30V	5% (E24) 10Ω ≤ R ≤ 1MΩ 1% (E24/E96) 10Ω ≤ R ≤ 1MΩ Jumper < 50mΩ	10Ω ≤ R < 100Ω ±300 ppm/°C 100Ω ≤ R ≤ 1MΩ ±200 ppm/°C	Rated Current 0.5A Max. Current I,0A		
AF0201	1/20 W		25V	50V	50V	5% (E24) IΩ ≤ R ≤ I0MΩ 0.5%, I% (E24/E96) IΩ ≤ R ≤ I0MΩ Jumper < 50mΩ	IΩ ≤ R ≤ I0Ω -100/+350 ppm/°C I0Ω < R ≤ I0MΩ ±200 ppm/°C	Rated Current 0.5A Max. Current 1.0A		
AF0402	1/16 W	-	50V	100V	100V	5% (E24) I $\Omega \le R \le 22M\Omega$ 0.5%, I% (E24/E96) I $\Omega \le R \le 10M\Omega$ Jumper $< 50m\Omega$	$I\Omega \le R \le I0\Omega$ $\pm 200 \text{ ppm/}^{\circ}\text{C}$ $I0\Omega < R \le I0M\Omega$ $\pm 100 \text{ ppm/}^{\circ}\text{C}$ $I0M\Omega < R \le 22M\Omega$ $\pm 200 \text{ ppm/}^{\circ}\text{C}$ $I00\Omega \le R \le IM\Omega$ $\pm 50 \text{ ppm/}^{\circ}\text{C}$	Rated Current I A Max. Current 2A		
	1/8W	-	50V	100V	100∨	5% (E24) IΩ ≤ R ≤ I0MΩ 0.5%, 1%, (E24/E96) IΩ ≤ R ≤ I0MΩ	IΩ≤R≤10Ω ±200 ppm/°C I0Ω <r≤10mω ±100 ppm/°C</r≤10mω 			
AF0603	1/10 W	-	75V	150V	150V	5% (E24) IΩ ≤ R ≤ 22MΩ 0.5%, I% (E24/E96) IΩ ≤ R ≤ I0MΩ Jumper < 50mΩ	IΩ ≤ R ≤ I0Ω ±200 ppm/°C I0Ω < R ≤ I0MΩ ±100 ppm/°C I0MΩ < R ≤ 22MΩ ±200 ppm/°C I00Ω ≤ R ≤ I0MΩ ±50 ppm/°C	Rated Current I A Max. Current 2A		
	1/5 W	-55 ℃ to 155 ℃	75∨	150V	150V	5% (E24) IΩ ≤ R ≤ I0MΩ 0.5%, I%, (E24/E96) IΩ ≤ R ≤ I0MΩ	IΩ≤R≤I0Ω ±200 ppm/°C I0Ω <r≤i0mω ±100 ppm/°C</r≤i0mω 			
AF0805	1/8 W	-	150∨	300V	300V	5% (E24) IΩ ≤ R ≤ 22MΩ 0.5%, 1% (E24/E96) IΩ ≤ R ≤ 10MΩ Jumper < 50mΩ	$\begin{split} & \Omega \leq R \leq 10\Omega \\ & \pm 200 \text{ ppm/}^\circC \\ & 10\Omega < R \leq 10M\Omega \\ & \pm 100 \text{ ppm/}^\circC \\ & 10M\Omega < R \leq 22M\Omega \\ & \pm 200 \text{ ppm/}^\circC \\ & 100\Omega \leq R \leq 10M\Omega \\ & \pm 50 \text{ ppm/}^\circC \end{split}$	Rated Current 2A Max. Current 5A		
	1/4 W	-	150∨	300V	300∨	5% (E24) IΩ ≤ R ≤ I0MΩ 0.5%, I%, (E24/E96) IΩ ≤ R ≤ I0MΩ	IΩ≤R≤I0Ω ±200 ppm/°C I0Ω < R≤I0MΩ ±100 ppm/°C			
AF1206	1/4 W	-	200∨	400V	500V	5% (E24) $I\Omega \le R \le 22M\Omega$ 0.5%, 1% (E24/E96) $I\Omega \le R \le 10M\Omega$ Jumper < 50m Ω	Ω ≤ R ≤ 10Ω ±200 ppm/°C 0Ω < R ≤ 10MΩ ±100 ppm/°C 0MΩ < R ≤ 22MΩ ±200 ppm/°C 00Ω ≤ R ≤ 10MΩ ±50 ppm/°C	Rated Current 2A Max. Current 10A		
	1/2 W	-	200V	400V	500V	5% (E24) Ω ≤ R ≤ 10MΩ 0.5%, 1%, (E24/E96) Ω ≤ R ≤ 10MΩ	$I \Omega \le R \le I 0 \Omega$ $\pm 200 \text{ ppm/°C}$ $I 0 \Omega < R \le I 0 M \Omega$ $\pm 100 \text{ ppm/°C}$			

Chip Resistor Surface Mount AF SERIES 0100 to 2512

ELECTRICAL CHARACTERISTICS

Table 2

		CHARACTERISTICS								
TYPE	POWER	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria		
AF1210	1/2 W	55 ℃ to 155 ℃ -	200V	500V	500V	$5\% (E24)$ $I\Omega \le R \le I0M\Omega$ $0.5\%, I\% (E24/E96)$ $I\Omega \le R \le I0M\Omega$ Jumper < 50mΩ	$\begin{split} & \Omega \leq R \leq 10\Omega \\ &\pm 200 \text{ ppm/}^\circC \\ & 0\Omega < R \leq 10M\Omega \\ &\pm 100 \text{ ppm/}^\circC \\ & 00\Omega \leq R \leq 1M\Omega \\ &\pm 50 \text{ ppm/}^\circC \end{split}$	Rated Current 2A Max. Current 10A		
AF1218	I W		200V	500V	500V	$5\% (E24)$ $I\Omega \le R \le IM\Omega$ $0.5\%, I\% (E24/E96)$ $I\Omega \le R \le IM\Omega$ Jumper < 50mΩ	1Ω ≤ R ≤ 10Ω ±200 ppm/°C 10Ω < R ≤ 1MΩ ±100 ppm/°C 100Ω ≤ R ≤ 2.2MΩ ±50 ppm/°C	Rated Current 2A Max, Current 10A		
AF2010	3/4 W		200V	500V	500V	5% (E24) IΩ ≤ R ≤ I0MΩ 0.5%, I% (E24/E96) IΩ ≤ R ≤ I0MΩ Jumper < 50mΩ	1Ω ≤ R ≤ 10Ω ±200 ppm/°C 10Ω < R ≤ 10MΩ ±100 ppm/°C 100Ω ≤ R ≤ 10MΩ ±50 ppm/°C	Rated Current 2A Max. Current 10A		
AF2512	I W		200V	500V	500V	5% (E24) IΩ ≤ R ≤ I0MΩ 0.5%, I% (E24/E96) IΩ ≤ R ≤ I0MΩ Jumper < 50mΩ	IΩ ≤ R ≤ I0Ω ±200 ppm/°C I0Ω < R ≤ I0MΩ ±100 ppm/°C I00Ω ≤ R ≤ I0MΩ ±50 ppm/°C	Rated Current 2A Max. Current 10A		

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles of AF-series is the same as RC-series. Please see the special data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	AF0100	AF0201	AF0402	AF0603 AF0805 AF1206	AF1210	AF1218 AF2010 AF2512
Paper taping reel (R)	7" (178 mm)	20,000	10,000/20,000	10,000/20,000	5,000	5,000	
	13" (330 mm)		50,000	50,000	20,000	20,000	
Embossed taping reel (K)	7" (178 mm)						4,000

ΝΟΤΕ

I. For paper/embossed tape and reel specification/dimensions, please see the special data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

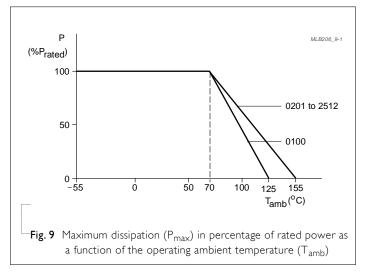
AF0100 Range: -55°C to + 125°C AF0201 - AF2512 Range: -55°C to + 155°C

POWER RATING

Each type rated power at 70°C: AF0100=1/32W (0.03125W) AF0201=1/20W (0.05W) AF0402=1/16 W (0.0625W); 1/8W (0.125W) AF0603=1/10 W (0.1W); 1/5W (0.2W) AF0805=1/8 W (0.125W); 1/4W (0.25W) AF1206=1/4 W (0.25W); 1/2W (0.5W) AF1210=1/2W (0.5W) AF1218=1W AF2010=3/4W (0.75W) AF2512=1W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:


 $V = \sqrt{(P \times R)}$

Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

YAGEO

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements TEST METHOD REQUIREMENTS TEST PROCEDURE Temperature IEC 601 15-1 4.8 At +25/-55°C and +25/+125°C Refer to table 2 Coefficient of MIL-STD-202 Method 304 Formula: Resistance (T.C.R.) T.C.R= $\frac{R_2 - R_1}{1 - R_2 - R_1} \times 10^6 (ppm/°C)$ $R_{1}(t_{2}-t_{1})$ Where t₁=+25°C or specified room temperature t₂=–55°C or +125°C test temperature R₁=resistance at reference temperature in ohms R₂=resistance at test temperature in ohms Life/Endurance IEC 601 15-1 4.25 At 70±2°C for 1,000 hours, RCWV applied for 0100: $\pm (3.0\% + 0.05 \Omega)$ MIL-STD-202 Method 108 1.5 hours on, 0.5 hour off, still-air required Others: $\pm(1.0\%+0.05 \Omega)$ $<100 \text{ m}\Omega$ for Jumper High MIL-STD-202 Method 108 0100: ±(2.0%+0.05 Ω) 0100: 1.000 hours at 125°C Temperature Others: 1.000 hours at 155±3°C <50 m Ω for Jumper Exposure unpowered Others: $\pm(1.0\%+0.05 \Omega)$ < 100 m Ω for Jumper Moisture MIL-STD-202 Method 106 $0100: \pm (2.0\% + 0.05 \Omega)$ Each temperature / humidity cycle is defined at 8 Resistance hours, 3 cycles / 24 hours for 10d. <50 m Ω for Jumper with 25°C / 65°C 95% R.H, Others: without steps 7a & 7b, unpowered $\pm (0.5\% + 0.05 \Omega)$ for 0.5%, 1% tol. Parts mounted on test-boards, \pm (1.0%+0.05 Ω) for 5% tol. without condensation on parts <100 m Ω for Jumper Thermal Shock MIL-STD-202 Method 107 -55 / +125°C 0100: \pm (1.0%+0.05 Ω) Number of cycles required is 300. <50 m Ω for Jumper Devices mounted Others: Maximum transfer time is 20 seconds. $\pm (0.5\% + 0.05 \ \Omega)$ for 0.5%, 1% tol. Dwell time is 15 minutes \pm (1%+0.05 Ω) for 5% tol. <100 m Ω for Jumper Short Time IEC60115-14.13 2.5 times of rated voltage or maximum overload 0100: ±(2.0%+0.05 Ω) Overload voltage whichever is less for 5 seconds at room Others: $\pm (1.0\% + 0.05 \Omega)$ temperature <50 m Ω for Jumper No visible damage Bending IEC 601 15-1 4.33 Chips mounted on a 90 mm glass epoxy resin $\pm (1.0\% + 0.05 \Omega)$ PCB (FR4) 0100: Bending : 0100/0201/0402: 5 mm <50 m Ω for Jumper 0603/0805: 3 mm Others: 1206 & above: 2 mm $<100 \text{ m}\Omega$ for Jumper Bending time: 60±5 seconds No visible damage

YAGEO

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Biased Humidity	MIL-STD-202 method 103	I ,000 hours; 85°C /85%R.H., I 0% of operating power.	0100: ±(5%+0.05Ω) <50 mΩ for umper
		Measurement at 24±4 hours after test	Others:
		conclusion.	$ \Omega \leq R \leq M\Omega: \pm (3\% + 0.05\Omega)$
			$ M\Omega < R \le 0M\Omega: \pm (5\% + 0.05\Omega)$
			<100 m Ω for Jumper
Solderability		Condition B, no pre-heat of samples	0100: ±(1.0%+0.05Ω)
- Resistance to	IEC 60115-1 4.18	Lead-free solder, 260±5°C, 10±1 seconds	Others:
Soldering Heat	MIL-STD-202 Method 215	immersion time	±(0.5%+0.05Ω) for 0.5%, 1% tol.
		Procedure 2 for SMD: devices fluxed and	±(1.0%+0.05Ω) for 5% tol.
		cleaned with isopropanol	<50 m Ω for Jumper
			No visible damage
- Wetting	J-STD-002	Electrical test not required	Well tinned (≥95% covered)
		Magnification 10X	No visible damage
		SMD conditions:	
		Others:	
		(a) Method B, aging 4 hours at 155°C dry heat, lead-free solder bath at 245°C	
		(b) Method B, dipping at 215°C for 3 seconds	
		0100:	
		Ist step: Method B, aging 4 hours at 155°C dry heat	
		2 nd step: Lead free solder bath at 245°C	
FOS	ASTM-B-809-95*	Sulfur 750 hours, 105°C. unpowered	0100: ±(5.0%+0.05Ω)
	* Modified		Others: ±(4.0%+0.05Ω)
			<100 m Ω for Jumper

YAGEO

Chip Resistor Surface MountAFSERIES0100 to 2512

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 8	Mar. 26, 2021	-	- Add TCR 50ppm and size 01005 extend
Version 7	Nov. 1, 2019	-	- Add in AF double power
Version 6	Sep. 05, 2019	-	- Updated dimensions
Version 5	Jun. 21, 2016	-	- Update test and requirement
Version 4	Dec. 24, 2015	-	- Update Dielectric Withstanding Voltage& Resistance value
Version 3	Apr. 01, 2015	-	- Modified test and requirements
Version 2	Nov. 20, 2014	-	- Tests and requirement update
Version I	Sep. 27, 2013	-	- Size 0201/1210/1218/2010/2512 extend
Version 0	Jan 07, 2011	-	- First issue of this specification

"Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products are unchanged. Any product change will be announced by PCN."

