SCOPE

This specification describes AC0201 to AC2512 chip resistors with leadfree terminations made by thick film process.

APPLICATIONS

- All general purpose applications
- Car electronics, industrial application

FEATURES

- AEC-Q200 qualified
- Moisture sensitivity level: MSL I
- AC series soldering is compliant with J-STD-020D
- Halogen free epoxy
- RoHS compliant
 - Products with lead-free terminations meet RoHS requirements
 - Pb-glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reduce environmentally hazardous waste
- High component and equipment reliability
- The resistors are 100% performed by automatic optical inspection prior to taping.

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AC XXXX X X X XX XXXX L

(2) (3) (4) (5) (7)(1)(6)

(I) SIZE

0201/0402/0603/0805/1206/1210/1218/2010/2512

(2) TOLERANCE

$D = \pm 0.5\%$	$J = \pm 5\%$ (for Jumper ordering, use code of J)
$F = \pm 1\%$	

(3) PACKAGING TYPE

R = Paper taping reel

K = Embossed taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(5) TAPING REEL

07 = 7 inch dia. Reel	10 = 10 inch dia. Reel
13 = 13 inch dia. Reel	7W = 7 inch dia. Reel & 2 × standard power
	3W = 13 inch dia. Reel & 2 × standard power

(6) RESISTANCE VALUE

I Ω to 22 M Ω

There are 2~4 digits indicated the resistance value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is the system default code for ordering only. (Note)

Resistance rule of global part

number Resistance coding rule	Example
XRXX (I to 9.76Ω)	R = Ω R5 = .5Ω 9R76 = 9.76Ω
XXRX (10 to 97.6Ω)	$10R = 10\Omega$ $97R6 = 97.6\Omega$
XXXR (100 to 976Ω)	100R = 100Ω 976R = 976Ω
XKXX (1 to 9.76 K Ω)	IK = 1,000Ω 9K76 = 9760Ω
XMXX (1 to 9.76 M Ω)	$IM = I,000,000\Omega$ 9M76= 9,760,000 Ω
XXMX (10 MΩ)	$10M = 10,000,000\Omega$

ORDERING EXAMPLE

The ordering code for an AC0402 chip resistor, value 100 K Ω with ±1% tolerance, supplied in 7-inch tape reel is: AC0402FR-07100KL.

NOTE

- I. All our R-Chip products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process".
- 2. On customized label, "LFP" or specific symbol can be printed.
- 3. AC series with ±0.5% tolerance is also available. For further information, please contact sales.

MARKING

AC0201	/ AC0402	
Fig. 1		No marking
AC0603	/ AC0805 / AC1206 / A	CI2I0 / AC20I0 / AC25I2
Fig. 2	1_13 Value=10 KΩ	E-24 series: 3 digits, $\pm 5\%$ First two digits for significant figure and 3rd digit for number of zeros
AC0603		
Fig. 3	2<u>μ</u> Value = 24 Ω	E-24 series: 3 digits, ±1% & ±0.5% One short bar under marking letter
Fig. 4	Value = 12.4 KΩ	E-96 series: 3 digits, $\pm 1\%$ & $\pm 0.5\%$ First two digits for E-96 marking rule and 3rd letter for number of zeros
AC0805	/ ACI206 / ACI2I0 / A	C2010 / AC2512
Fig. 5	1002 Value = 10 KΩ	Both E-24 and E-96 series: 4 digits, $\pm 1\% \& \pm 0.5\%$ First three digits for significant figure and 4th digit for number of zeros
AC1218		
Fig. 6	103 Value = 10 KΩ	E-24 series: 3 digits, $\pm 5\%$ First two digits for significant figure and 3rd digit for number of zeros
Fig. 7	11112 Value = 10 KΩ	Both E-24 and E-96 series: 4 digits, $\pm 1\% \& \pm 0.5\%$ First three digits for significant figure and 4th digit for number of zeros

ΝΟΤΕ

For further marking information, please refer to data sheet "Chip resistors marking". Marking of AC series is the same as RC series.

CONSTRUCTION

The resistors are constructed on top of an automotive grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a protective glass. The composition of the glaze is adjusted to give the approximately required resistance value and laser trimming of this resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations (Ni / matte tin) are added, as shown in Fig.8.

OUTLINES

DIMENSIONS

Table I For outlines, please refer to Fig. 9

ТҮРЕ	L (mm)	W (mm)	H (mm)	l⊨(mm)	l ₂ (mm)
AC0201	0.60 ±0.03	0.30 ±0.03	0.23 ±0.03	0.12 ±0.05	0.15 ±0.05
AC0402	1.00 ±0.05	0.50 ±0.05	0.32 ±0.05	0.20 ±0.10	0.25 ±0.10
AC0603	1.60 ±0.10	0.80 ±0.10	0.45 ±0.10	0.25 ±0.15	0.25 ±0.15
AC0805	2.00 ±0.10	1.25 ±0.10	0.50 ±0.10	0.35 ±0.20	0.35 ±0.20
AC1206	3.10 ±0.10	1.60 ±0.10	0.55 ±0.10	0.45 ±0.20	0.40 ±0.20
AC1210	3.10 ±0.10	2.60 ±0.15	0.55 ±0.10	0.45 ±0.15	0.50 ±0.20
AC1218	3.10 ±0.10	4.60 ±0.10	0.55 ±0.10	0.45 ±0.20	0.40 ±0.20
AC2010	5.00 ±0.10	2.50 ±0.15	0.55 ±0.10	0.55 ±0.15	0.50 ±0.20
AC2512	6.35 ±0.10	3.10 ±0.15	0.55 ±0.10	0.60 ±0.20	0.50 ±0.20

Chip Resistor Surface Mount | AC | SERIES | 0201 to 2512

ELECTRICAL CHARACTERISTICS

Table 2 **CHARACTERISTICS** Resistance Temperature Jumper Max. Max. Dielectric Operating TYPE POWER Coefficient Criteria Range Temperature Working Overload Withstanding Voltage Voltage Voltage Range $|\Omega \le R \le |0\Omega|$ Rated Current 5% (E24) 0.5A $|\Omega \leq R \leq |0M\Omega|$ -100/+350ppm°C Maximum $10\Omega < R \le 10M$ 1% (E24/E96) **-**55 °C to AC0201 1/20 W 25V 50V 50V Current $|\Omega \leq R \leq |0M\Omega|$ ±200ppm°C 155 °C 1.0A 0.5% (E24/E96) $10\Omega \le R \le IM\Omega$ Jumper<50mΩ Rated Current $|\Omega \leq R \leq |0\Omega|$ 5% (E24) ΙA $|\Omega \leq R \leq 22M\Omega$ ±200ppm°C **-**55 °C to Maximum 0.5%, 1% (E24/E96) $10\Omega < R \le 10M\Omega$ 100V 1/16 W 50V 100V 155 °C Current $|\Omega \leq R \leq |0M\Omega|$ ±100ppm°C 2A Jumper<50m Ω $10M\Omega < R \le 22M\Omega$ AC0402 ±200ppm°C 5% (E24) $|\Omega \leq R \leq |0\Omega|$ -55 °C to $|\Omega \leq R \leq |0M\Omega|$ ±200 ppm°C 100V 1/8W 75V 100V 155 °C $10\Omega < R \le 10M\Omega$ 0.5%, 1% (E24/E96) $|\Omega \leq R \leq |0M\Omega|$ ±100 ppm°C Rated Current 5% (E24) $|\Omega \leq R \leq |0\Omega|$ ΙA $|\Omega \leq R \leq 22M\Omega$ ±200ppm°C $10\Omega < R \le 10M\Omega$ Maximum 0.5%, 1% (E24/E96) **-**55 °C to 1/10 W 75V 150V 150V Current 155 °C $|\Omega \leq R \leq |0M\Omega|$ ±100ppm°C 2A Jumper<50m Ω $10M\Omega < R \le 22M\Omega$ AC0603 ±200ppm°C 5% (E24) $|\Omega \leq R \leq |0\Omega|$ -55 °C to $|\Omega \le R \le |0M\Omega|$ ±200 ppm°C 1/5 W 75V 150V 150V 155 °C $10\Omega < R \le 10M\Omega$ 0.5%, 1% (E24/E96) $|\Omega \leq R \leq |0M\Omega|$ ±100 ppm°C

CHARACTERI			FERISTICS					
TYPE	POWER	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
	1/8 W	–55 °C to	150V	300∨	300V	5% (E24) IΩ≤R≤22 MΩ 0.5%, I% (E24/E96)	IΩ≤R≤10Ω ±200ppm°C 10Ω < R≤10MΩ	Rated Current 2A Maximum
AC0805		155 ℃				$I\Omega \le R \le I0M\Omega$ Jumper < 50m Ω	±100ppm°C 10MΩ < R ≤ 22MΩ ±200ppm°C	Current 5A
	I/4 ₩	–55 ℃ to 155 ℃	150V	300∨	300V	5% (E24) $I \Omega \le R \le I0M\Omega$ 0.5%, $I%$ (E24/E96) $I \Omega \le R \le I0M\Omega$	IΩ≤R≤10Ω ±200 ppm°C 10Ω < R≤10MΩ ±100 ppm°C	
AC1206	1/4 W	–55 ℃ to I55 ℃	200V	400V	500V	5% (E24) I $\Omega \le R \le 22M\Omega$ 0.5%, I% (E24/E96) I $\Omega \le R \le 10M\Omega$ Jumper<50m Ω	IΩ ≤ R ≤ 10Ω ±200ppm°C 10Ω < R ≤ 10ΜΩ ±100ppm°C 10MΩ < R ≤ 22MΩ ±200ppm°C	Rated Current 2A Maximum Current 10A
	1/2 W	–55 ℃ to 155 ℃	200V	400V	500V	5% (E24) IΩ≤R≤ I0MΩ 0.5%, I% (E24/E96) IΩ≤R≤ I0MΩ	IΩ≤R≤10Ω ±200 ppm°C 10Ω < R≤10MΩ ±100 ppm°C	
AC1210	1/2 W	–55 ℃ to 155 ℃	200V	500∨	500V	5% (E24) I $\Omega \le R \le 22M\Omega$ 0.5%, I% (E24/E96) I $\Omega \le R \le 10M\Omega$ Jumper<50m Ω	$I\Omega \le R \le 10\Omega$ $\pm 200 \text{ppm}^{\circ}\text{C}$ $I0\Omega < R \le 10M\Omega$ $\pm 100 \text{ppm}^{\circ}\text{C}$ $I0M\Omega < R \le 22M\Omega$ $\pm 200 \text{ppm}^{\circ}\text{C}$	Rated Current 2A Maximum Current 10A
	IW	–55 ℃ to 155 ℃	200V	500∨	500∨	5% (E24) IΩ≤R≤ 10MΩ 0.5%, 1% (E24/E96) IΩ≤R≤ 10MΩ	IΩ≤R≤10Ω ±200 ppm°C 10Ω < R≤10MΩ ±100 ppm°C	

	CHARACTERISTICS							
TYPE	POWER	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
						5% (E24)	$ \Omega \leq R \leq 0\Omega $	Rated Current
						$ \Omega \leq R \leq M\Omega $	±200ppm°C	6A
	IW	−55 °C to 155 °C	200V	500V	500V	0.5%, 1% (E24/E96)	$10\Omega < R \le 1M\Omega$	Maximum
		155 C				$ \Omega \leq R \leq M\Omega $	±100ppm°C	Current
AC1218						Jumper<50m Ω		10A
						5% (E24)	$ \Omega \leq R \leq 0\Omega $	
	1.5W	- 55 °C to	200V	500V	500V	$ \Omega \leq R \leq M\Omega $	±200 ppm°C	
	1,3 V V	155 °C	200 v	500 v	5000	0.5%, 1% (E24/E96)	$10\Omega < R \le 1M\Omega$	
						$ \Omega \leq R \leq M\Omega $	±100 ppm°C	
						5% (E24)	$ \Omega \le R \le 0\Omega $	Rated Current
		−55 °C to 3/4 W I55 °C	200V		00V 500V	$ \Omega \le R \le 22M\Omega$	±200ppm°C	2A
	3/4 W			500V		0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	Maximum
						$ \Omega \leq R \leq 0M\Omega $	±100ppm°C	Current
						Jumper<50m Ω	$10M\Omega < R \le 22M\Omega$	10A
AC2010							±200ppm°C	
			200V	500V	500V	5% (E24)	$ \Omega \le R \le 0\Omega $	
	−55 °C to	- 55 °C to				$ \Omega \leq R \leq 0M\Omega $	±200 ppm°C	
	1.23 * *	1.23VV I55 ℃				0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	
						$ \Omega \le R \le 10M\Omega$	±100 ppm°C	
						5% (E24)	$ \Omega \le R \le 0\Omega $	Rated Current
						$ \Omega \le R \le 22M\Omega$	±200ppm°C	2A
	IW	- 55 °C to	200V	500V	500V	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	Maximum
		155 ℃	2001	5001	5007	$ \Omega \leq R \leq 0M\Omega $	±100ppm°C	Current
A C 25 1 2						Jumper<50m Ω	$10M\Omega < R \le 22M\Omega$	10A
AC2512							±200ppm°C	
						5% (E24)	$ \Omega \le R \le 0\Omega $	
	2 W	-55 °C to 200V	400V	500V	$ \Omega \leq R \leq 0M\Omega $	±200 ppm°C		
		155 °C	2004	4007	2004	0.5%, 1% (E24/E96)	$10\Omega < R \le 10M\Omega$	
						$ \Omega \le R \le 0M\Omega $	±100 ppm°C	

FOOTPRINT AND SOLDERING PROFILES

Recommended footprint and soldering profiles of AC-series is the same as RC-series. Please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE REEL AC0201 AC0402 AC0603 AC0805 AC1206 AC1210 AC1218 AC2010 AC2512 DIMENSION Paper taping reel (R) 7" (178 mm) 10,000 5,000 10,000 5,000 5,000 5,000 10" (254 mm) 20,000 20,000 10,000 10,000 10,000 10,000 13" (330 mm) 50,000 50,000 20,000 20,000 20,000 20,000 Embossed taping reel (K) 7" (178 mm) 4.000 4.000 4.000 ____

NOTE

I. For paper/embossed tape and reel specifications/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

Range: -55 °C to +155 °C

POWER RATING

Each type rated power at 70 °C: AC0201=1/20W (0.05W) AC0402=1/16W (0.0625W); 1/8W (0.125W) AC0603=1/10W (0.1W); 1/5W (0.2W) AC0805=1/8W (0.125W); 1/4 W(0.25 W) AC1206=1/4W (0.25W); 1/2 W (0.5 W) AC1210=1/2W (0.5W); 1/2 W (0.5 W) AC1218=1W; 1.5W AC2010=3/4W (0.75W); 1.25W AC2512=1 W; 2W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

 $V = \sqrt{(P \times R)}$

Or Maximum working voltage whichever is less

Where

V = Continuous rated DC or AC (rms) working voltage (V) P = Rated power (W) R = Resistance value (Ω)

YAGEO

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature Exposure	AEC-Q200 Test 3 MIL-STD-202 Method 108	1,000 hours at $T_A = 155$ °C, unpowered	\pm (1.0%+0.05 Ω) for D/F tol ±(2.0%+0.05 Ω) for J tol <50 m Ω for Jumper
Moisture Resistance	AEC-Q200 Test 6 MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours (method 106F), 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	±(0.5%+0.05 Ω) for D/F tol ±(2.0%+0.05 Ω) for J tol <100 m Ω for Jumper
Biased Humidity	AEC-Q200 Test 7 MIL-STD-202 Method 103	I ,000 hours; 85 °C / 85% RH I 0% of operating power Measurement at 24±4 hours after test conclusion.	\pm (1.0%+0.05 Ω) for D/F tol ±(3.0%+0.05 Ω) for J tol <100 m Ω for Jumper
Operational Life	AEC-Q200 Test 8 MIL-STD-202 Method 108	1,000 hours at 125 °C, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	$\pm (1.0\% + 0.05\Omega)$ for D/F tol $\pm (3.0\% + 0.05\Omega)$ for J tol <100 m Ω for Jumper
Resistance to Soldering Heat	AEC-Q200 Test 15 MIL-STD-202 Method 210	Condition B, no pre-heat of samples Lead-free solder, 260±5 °C, 10±1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	$\pm (0.5\% + 0.05\Omega)$ for D/F tol $\pm (1.0\% + 0.05\Omega)$ for J tol <50 m Ω for Jumper No visible damage
Thermal Shock	AEC-Q200 Test 16 MIL-STD-202 Method 107	-55/+125 °C Number of cycles is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	\pm (0.5%+0.05 Ω) for D/F tol \pm (1.0%+0.05 Ω) for J tol <50 m Ω for Jumper
ESD	AEC-Q200 Test 17 AEC-Q200-002	Human Body Model, I _{pos.} + I _{neg.} discharges 0201: 500V 0402/0603: IKV 0805 and above: 2KV	±(3.0%+0.05 Ω) <50 m Ω for Jumper

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	AEC-Q200 Test 18 J-STD-002	 Electrical Test not required Magnification 50X SMD conditions: (a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds. (b) Method B, steam aging 8 hours, dipping at 215±3 °C for 5±0.5 seconds. (c) Method D, steam aging 8 hours, dipping at 260±3 °C for 7±0.5 seconds. 	Well tinned (≥95% covered) No visible damage
Board Flex	AEC-Q200 Test 21 AEC-Q200-005	Chips mounted on a 90mm glass epoxy resin PCB (FR4) Bending for 0201/0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm Holding time: minimum 60 seconds	±(1.0%+0.05 Ω) <50 m Ω for Jumper
Temperature Coefficient of Resistance (T.C.R.)	MIL-STD-202 Method 304	At +25/-55 °C and +25/+125 °C Formula: T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)}$ × 10 ⁶ (ppm/°C) Where t_1 =+25 °C or specified room temperature t_2 =-55 °C or +125 °C test temperature R_1=resistance at reference temperature in ohms R_2=resistance at test temperature in ohms	Refer to table 2
Short Time Overload	IEC60115-14.13	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 sec at room temperature	\pm (1.0%+0.05 Ω) for D/F tol \pm (2.0%+0.05 Ω) for J tol <50 m Ω for Jumper
FOS	ASTM-B-809-95	Sulfur (saturated vapor) 500 hours, 60±2° C , unpowered	±(1.0%+0.05 Ω)

YAGEO

 Chip Resistor Surface Mount
 AC
 SERIES
 0201 to 2512

<u>REVISION HISTORY</u>

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 8	Mar. 19, 2021	-	- Upgrade the working voltage of 0402 double power to 75V
Version 7	July 10, 2017	-	- Add "3W" part number coding for 13" Reel & double power
Version 6	May 31, 2017	-	- Add 10" packing
Version 5	Dec. 07, 2015	-	- Add in AC double power
			- Remove 7D packing
Version 4	May 25, 2015	-	- Extend resistance range
	,,		- Add in AC0201
			- Update FOS test and requirements
			- Feature description updated
Version 3	Feb 13, 2014	-	- add ±0.5%
			- delete 10" taping reel
			- Jumper criteria added
Version 2	Feb. 10, 2012	-	- ACI218 marking and outline figure updated
			- Case size 1210, 1218, 2010, 2512 extended
Version I	Feb. 01, 2011	-	- Test method and procedure updated
			- Packing style of 7D added
Version 0	Nov. 10, 2010	-	- First issue of this specification

LEGAL DISCLAIMER

Yageo, its distributors and agents (collectively, "Yageo"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. Yageo may make changes, modifications and/or improvements to product related information at any time and without notice.

Yageo makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, Yageo disclaims (i) any and all liability arising out of the application or use of any Yageo product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

Yageo statements regarding the suitability of products for certain types of applications are based on Yageo's knowledge of typical operating conditions for such types of applications in a generic nature. Such statements are neither binding statements of Yageo nor intended to constitute any warranty concerning the suitability for a specific customer application or use. They are intended for use only by customers with requisite knowledge and experience for determining whether Yageo products are the correct products for their application or use. In addition, unpredicatable and isolated cases of product failure may still occur, therefore, customer application or use of Yageo products which requires higher degree of reliability or safety, shall employ additional protective safeguard measures to ensure that product failure would not result in personal injury or property damage.

Yageo products are not designed for application or use in medical, life-saving, or life-sustaining devices or for any other application or use in which the failure of Yageo products could result in personal injury or death. Customers using or selling Yageo products not expressly indicated for above-mentioned purposes shall do so at their own risk and agree to fully indemnify Yageo and hold Yageo harmless.

Information provided here is intended to indicate product specifications only. Yageo reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.