SCOPE

This specification describes ACO2OI to AC 25 I 2 chip resistors with leadfree terminations made by thick film process.

APPLICATIONS

- All general purpose applications
- Car electronics, industrial application

FEATURES

- AEC-Q200 qualified
- Moisture sensitivity level: MSL I
- AC series soldering is compliant with J-STD-020D
- Halogen free epoxy
- RoHS compliant
- Products with lead-free terminations meet RoHS requirements
- Pb -glass contained in electrodes, resistor element and glass are exempted by RoHS
- Reduce environmentally hazardous waste
- High component and equipment reliability
- The resistors are 100% performed by automatic optical inspection prior to taping.

ORDERNG INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AC XXXX X X X XX XXXX L

(1) (2) (3) (4) (5) (6) (7)
(I) SIZE

0201/0402/0603/0805/1206/1210/1218/2010/2512
(2) TOLERANCE
$D= \pm 0.5 \% \quad J= \pm 5 \%$ (for Jumper ordering, use code of J)
$F= \pm 1 \%$
(3) PACKAGING TYPE

$$
R=\text { Paper taping reel } \quad K=\text { Embossed taping reel }
$$

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec
(5) TAPING REEL
$07=7$ inch dia. Reel $\quad 10=10$ inch dia. Reel
$13=13$ inch dia. Reel $\quad 7 \mathrm{~W}=7$ inch dia. Reel $\& 2 \times$ standard power
$3 \mathrm{~W}=13$ inch dia. Reel $\& 2 \times$ standard power
(6) RESISTANCE VALUE
1Ω to $22 \mathrm{M} \Omega$
There are $2 \sim 4$ digits indicated the resistance value. Letter $R / K / M$ is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not IK20.
Detailed coding rules of resistance are shown in the table of "Resistance rule of global part number'".
(7) DEFAULT CODE

Letter L is the system default code for ordering only. (Note)

Resistance rule number	global part
Resistance coding rule	Example
$\begin{aligned} & \text { XRXX } \\ & (I \text { to } 9.76 \Omega) \end{aligned}$	$\begin{array}{r} I R=1 \Omega \\ \mid R 5=1.5 \Omega \\ 9 R 76=9.76 \Omega \end{array}$
XXRX (10 to 97.6Ω)	$\begin{array}{r} 10 R=10 \Omega \\ 97 R 6=97.6 \Omega \end{array}$
$\begin{aligned} & \text { XXXR } \\ & (100 \text { to } 976 \Omega) \end{aligned}$	$\begin{aligned} & 100 R=100 \Omega \\ & 976 R=976 \Omega \end{aligned}$
$\begin{aligned} & \text { XKXX } \\ & (1 \text { to } 9.76 \mathrm{~K} \Omega) \end{aligned}$	$\begin{aligned} 1 K & =1,000 \Omega \\ 9 K 76 & =9760 \Omega \end{aligned}$
$\begin{aligned} & \text { XMXX } \\ & (1 \text { to } 9.76 \mathrm{M} \Omega) \end{aligned}$	$\begin{array}{r} \text { IM }=1,000,000 \Omega \\ 9 M 76=9,760,000 \Omega \end{array}$
$\begin{aligned} & \text { XXMX } \\ & (10 \mathrm{MS} \Omega) \end{aligned}$	$10 M=10,000,000 \Omega$

Ordering example

The ordering code for an AC0402 chip resistor, value $100 \mathrm{~K} \Omega$ with $\pm 1 \%$ tolerance, supplied in 7 -inch tape reel is: AC0402FR-07I00KL.

NOTE

I. All our R-Chip products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process".
2. On customized label, "LFP" or specific symbol can be printed.
3. AC series with $\pm 0.5 \%$ tolerance is also available. For further information, please contact sales.

Fig. I
AC0603 / AC0805 / ACI206 / ACI2I0 / AC20I0 / AC25I2

1 E E-24 series: 3 digits, $\pm 5 \%$

First two digits for significant figure and 3 rd digit for number of zeros
Fig. 2 Value $=10 \mathrm{~K} \Omega$

AC0603

$2 \square$
 E-24 series: 3 digits, $\pm \mathrm{I} \%$ \& $\pm 0.5 \%$
 One short bar under marking letter

Fig. 3 Value $=24 \Omega$
| 1 [
E-96 series: 3 digits, $\pm \mathrm{I} \%$ \& $\pm 0.5 \%$
First two digits for E-96 marking rule and 3rd letter for number of zeros
Fig. $4 \quad$ Value $=12.4 \mathrm{~K} \Omega$
AC0805 / ACI206 / ACI2 10 / AC20I0 / AC25I2

102 Both E-24 and E-96 series: 4 digits, $\pm \mathrm{I} \%$ \& $\pm 0.5 \%$
First three digits for significant figure and 4th digit for number of zeros
Fig. 5 Value $=10 \mathrm{~K} \Omega$
ACl218

E-24 series: 3 digits, $\pm 5 \%$
First two digits for significant figure and 3rd digit for number of zeros
Fig. 6 Value $=10 \mathrm{~K} \Omega$

Both E-24 and E-96 series: 4 digits, $\pm 1 \%$ \& $\pm 0.5 \%$
First three digits for significant figure and 4th digit for number of zeros
Fig. 7 Value $=10 \mathrm{~K} \Omega$

NOTE

For further marking information, please refer to data sheet "Chip resistors marking". Marking of AC series is the same as RC series.

CONSTRUCTION

The resistors are constructed on top of an automotive grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a protective glass.
The composition of the glaze is adjusted to give the approximately required resistance value and laser trimming of this resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations ($\mathrm{Ni} / \mathrm{matte}$ tin) are added, as shown in Fig.8.

OUTLINES

Fig. 8_I Chip resistor outlines

Fig. 8_2 AC20I0/25I2 double power chip resistor outlines

DJMENSIONS

Table I For outlines, please refer to Fig. 9

TYPE	$\mathrm{L}(\mathrm{mm})$	$\mathrm{W}(\mathrm{mm})$	$\mathrm{H}(\mathrm{mm})$	$\mathbf{l}_{1}(\mathrm{~mm})$	$\mathbf{I}_{2}(\mathrm{~mm})$
AC020I	0.60 ± 0.03	0.30 ± 0.03	0.23 ± 0.03	0.12 ± 0.05	0.15 ± 0.05
AC0402	1.00 ± 0.05	0.50 ± 0.05	0.32 ± 0.05	0.20 ± 0.10	0.25 ± 0.10
AC0603	$\mathrm{I} .60 \pm 0.10$	0.80 ± 0.10	0.45 ± 0.10	0.25 ± 0.15	0.25 ± 0.15
AC0805	2.00 ± 0.10	1.25 ± 0.10	0.50 ± 0.10	0.35 ± 0.20	0.35 ± 0.20
ACI206	3.10 ± 0.10	1.60 ± 0.10	0.55 ± 0.10	0.45 ± 0.20	0.40 ± 0.20
ACI210	3.10 ± 0.10	2.60 ± 0.15	0.55 ± 0.10	0.45 ± 0.15	0.50 ± 0.20
ACI218	3.10 ± 0.10	4.60 ± 0.10	0.55 ± 0.10	0.45 ± 0.20	0.40 ± 0.20
AC2010	5.00 ± 0.10	2.50 ± 0.15	0.55 ± 0.10	0.55 ± 0.15	0.50 ± 0.20
AC25I2	6.35 ± 0.10	3.10 ± 0.15	0.55 ± 0.10	0.60 ± 0.20	0.50 ± 0.20

For dimension, please refer to Table I $\mathrm{AC0201/0402}$

ELECTRJCAL CHARACTERISTJCS

Table 2

		CHARACTERISTICS						
TYPE	POWER	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria

AC020I	I/20 W	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ 155^{\circ} \mathrm{C} \end{array}$	25V	50V	50V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq 10 M \Omega$	- $100 /+350 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	0.5A
						1\% (E24/E96)	$10 \Omega<\mathrm{R} \leq 10 \mathrm{M}$	Maximum
						$1 \Omega \leq R \leq 10 \mathrm{M} \Omega$	$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	Current
						0.5\% (E24/E96)		1.0A
						$10 \Omega \leq R \leq 1 M \Omega$		
						Jumper<50m Ω		
AC0402	1/16W	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ 155^{\circ} \mathrm{C} \end{array}$	50V	IOOV	I 00 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq 22 M \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	IA
						0.5\%, I\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	Maximum
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	Current
						Jumper $<50 \mathrm{~m} \Omega$	$10 M \Omega<R \leq 22 M \Omega$	2A
							$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
	I/8W	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ \quad 155^{\circ} \mathrm{C} \end{array}$	75V	I OOV	IOOV	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	
						$1 \Omega \leq R \leq 10 \mathrm{M} \Omega$	$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	
						0.5\%, I\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	
AC0603	I/IOW	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ \quad 155^{\circ} \mathrm{C} \end{array}$	75V	I50V	I50V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq 22 M \Omega$	$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	IA
						0.5\%, I\% (E24/E96)	$10 \Omega<\mathrm{R} \leq 10 \mathrm{M} \Omega$	Maximum
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	Current
						Jumper<50m Ω	$10 \mathrm{M} \Omega<R \leq 22 M \Omega$	2A
							$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
	$1 / 5 \mathrm{~W}$		75V	150 V	I50V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	
		$-55^{\circ} \mathrm{C} \text { to }$				$1 \Omega \leq R \leq 10 M \Omega$	$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	
		$155^{\circ} \mathrm{C}$				0.5\%, I\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	
						$1 \Omega \leq R \leq 10 \mathrm{M} \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	

TYPE	POWER	CHARACTERISTICS						
		Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
AC0805	$1 / 8 \mathrm{~W}$	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ 155^{\circ} \mathrm{C} \end{array}$	I50V	300 V	300 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq 22 \mathrm{M} \Omega$	$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	
						0.5\%, I\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	Maximum
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	Current
						Jumper $<50 \mathrm{~m} \Omega$	$10 M \Omega<R \leq 22 M \Omega$	5A
							$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	
	I/4W	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ 155^{\circ} \mathrm{C} \end{array}$	I50V	300 V	300 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	
						0.5\%, I\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	
ACI206	I/4W	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ 155^{\circ} \mathrm{C} \end{array}$	200V	400 V	500V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq 22 M \Omega$	$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	2 A
						0.5\%, I\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	Maximum
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	Current
						Jumper<50m Ω	$10 \mathrm{M} \Omega<\mathrm{R} \leq 22 \mathrm{M} \Omega$	10A
							$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	
	$1 / 2 \mathrm{~W}$	$-55^{\circ} \mathrm{C}$ to$155^{\circ} \mathrm{C}$	200 V	400V	500V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
						0.5\%, I\% (E24/E96)	$10 \Omega<\mathrm{R} \leq 10 \mathrm{M} \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	
ACl210	$1 / 2 \mathrm{~W}$	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ 155^{\circ} \mathrm{C} \end{array}$	200V	500 V	500 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq 22 M \Omega$	$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	2 A
						0.5\%, 1\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	Maximum
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	Current
						Jumper $<50 \mathrm{~m} \Omega$	$10 M \Omega<R \leq 22 M \Omega$	10A
							$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
	I W		200 V	500 V	500 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	
		$-55^{\circ} \mathrm{C}$ to				$1 \Omega \leq R \leq 10 \mathrm{M} \Omega$	$\pm 200 \mathrm{ppm}{ }^{\circ} \mathrm{C}$	
		$155^{\circ} \mathrm{C}$				0.5\%, I\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	

TYPE	POWER	CHARACTERISTICS						
		Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
ACl218	I W	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ 155^{\circ} \mathrm{C} \end{array}$	200 V	500 V	500 V	5\% (E24)	$1 \Omega \leq \mathrm{R} \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq 1 M \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	6A
						0.5\%, I\% (E24/E96)	$10 \Omega<\mathrm{R} \leq 1 \mathrm{M} \Omega$	Maximum
						$1 \Omega \leq R \leq 1 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	Current
						Jumper<50m		10A
	1.5 W	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ 155^{\circ} \mathrm{C} \end{array}$	200V	500 V	500 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	
						$1 \Omega \leq R \leq 1 M \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
						0.5\%, I\% (E24/E96)	$10 \Omega<R \leq 1 M \Omega$	
						$1 \Omega \leq R \leq I M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	
AC2010	$3 / 4 \mathrm{~W}$	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ 155^{\circ} \mathrm{C} \end{array}$	200V	500 V	500 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq \mathrm{R} \leq 22 \mathrm{M} \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	2A
						0.5\%, I\% (E24/E96)	$10 \Omega<\mathrm{R} \leq 10 \mathrm{M} \Omega$	Maximum
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	Current
						Jumper $<50 \mathrm{~m} \Omega$	$10 M \Omega<R \leq 22 M \Omega$	10A
							$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
	1.25 W	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ 155^{\circ} \mathrm{C} \end{array}$	200V	500 V	500 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
						0.5\%, I\% (E24/E96)	$10 \Omega<\mathrm{R} \leq 10 \mathrm{M} \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	
AC2512	I W	$\begin{array}{r} -55^{\circ} \mathrm{C} \text { to } \\ 155^{\circ} \mathrm{C} \end{array}$	200V	500 V	500 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	Rated Current
						$1 \Omega \leq R \leq 22 M \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	2 A
						0.5\%, 1\% (E24/E96)	$10 \Omega<\mathrm{R} \leq 10 \mathrm{M} \Omega$	Maximum
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	Current
						Jumper<50m	$10 M \Omega<R \leq 22 M \Omega$	10 A
							$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
	2 W		200V	400 V	500 V	5\% (E24)	$1 \Omega \leq R \leq 10 \Omega$	
		$-55^{\circ} \mathrm{C} \text { to }$				$1 \Omega \leq R \leq 10 M \Omega$	$\pm 200 \mathrm{ppm}^{\circ} \mathrm{C}$	
		$155^{\circ} \mathrm{C}$				0.5\%, I\% (E24/E96)	$10 \Omega<R \leq 10 M \Omega$	
						$1 \Omega \leq R \leq 10 M \Omega$	$\pm 100 \mathrm{ppm}^{\circ} \mathrm{C}$	

POOTPRNNT AND SOLDRRNG PROFULES

Recommended footprint and soldering profiles of AC-series is the same as RC-series. Please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING @UANTJTY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	AC0201	AC0402	AC0603	AC0805	ACI206	ACl210	ACl218	AC2010	AC25I2
Paper taping reel (R)	7" (178 mm)	10,000	10,000	5,000	5,000	5,000	5,000	---	---	---
	10" (254 mm)	20,000	20,000	10,000	10,000	10,000	10,000	---	---	---
	13 " (330 mm)	50,000	50,000	20,000	20,000	20,000	20,000	---	---	---
Embossed taping reel (K)	7" $(178 \mathrm{~mm})$	---	---	---	---	---	---	4,000	4,000	4,000

NOTE

I. For paper/embossed tape and reel specifications/dimensions, please refer to data sheet "Chip resistors packing".

FUNGTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

Range: $-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$

POWER RATING

Each type rated power at $70^{\circ} \mathrm{C}$:
AC020I $=1 / 20 \mathrm{~W}(0.05 \mathrm{~W})$
AC0402=I/I6W (0.0625W); 1/8W (0.125W)
AC0603 $=1 / 10 \mathrm{~W}(0.1 \mathrm{~W}) ; 1 / 5 \mathrm{~W}(0.2 \mathrm{~W})$
AC0805=I/8W (0.125W); 1/4 W(0.25 W)
ACI $206=1 / 4 \mathrm{~W}(0.25 \mathrm{~W}) ; 1 / 2 \mathrm{~W}(0.5 \mathrm{~W})$
ACI210 $=1 / 2 \mathrm{~W}(0.5 \mathrm{~W})$; IW
ACI2I8=IW; I.5W
AC20IO $=3 / 4 \mathrm{~W}(0.75 \mathrm{~W}) ; 1.25 \mathrm{~W}$
AC25I2=1 W; 2W

Rated voltage

The DC or AC (rms) continuous working voltage

Fig. IO Maximum dissipation ($\mathrm{P}_{\max }$) in percentage of rated power as a function of the operating ambient temperature ($\mathrm{T}_{\text {amb }}$) corresponding to the rated power is determined by the following formula:

$$
V=\sqrt{(P \times R)}
$$

Or Maximum working voltage whichever is less

Where
$\mathrm{V}=$ Continuous rated DC or AC (rms) working
voltage (V)
$\mathrm{P}=$ Rated power (W)
$R=$ Resistance value (Ω)

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

	TEST METHOD	PROCEDURE	REQUIREMENTS
TEST		1,000 hours at $T_{A}=155^{\circ} \mathrm{C}$, unpowered	$\pm(1.0 \%+0.05 \Omega)$ for D/F tol
Exposure	MIL-STD-202 Method 108		$\pm(2.0 \%+0.05 \Omega)$ for J tol
			$<50 \mathrm{~m} \Omega$ for Jumper

Biased	AEC-Q200 Test 7	1,000 hours; $85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$	$\pm(1.0 \%+0.05 \Omega)$ for $\mathrm{D} / \mathrm{F} \mathrm{tol}$
Humidity	MIL-STD-202 Method I03	10% of operating power	Measurement at 24 ± 4 hours after test conclusion.

Operational Life	AEC-Q200 Test 8 MIL-STD-202 Method 108	I,000 hours at $125^{\circ} \mathrm{C}$, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	$\pm(1.0 \%+0.05 \Omega)$ for D/F tol $\pm(3.0 \%+0.05 \Omega)$ for J tol $<100 \mathrm{~m} \Omega$ for Jumper
Resistance to	AEC-Q200 Test 15	Condition B, no pre-heat of samples	$\pm(0.5 \%+0.05 \Omega)$ for D / F tol
Soldering Heat	MIL-STD-202 Method 210	Lead-free solder, $260 \pm 5^{\circ} \mathrm{C}, 10 \pm$ I seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	$\pm(1.0 \%+0.05 \Omega)$ for J tol $<50 \mathrm{~m} \Omega$ for Jumper No visible damage

Thermal Shock	AEC-Q200 Test 16	$-55 /+125^{\circ} \mathrm{C}$	$\pm(0.5 \%+0.05 \Omega)$ for D / F tol
	MIL-STD-202 Method 107	Number of cycles is 300. Devices mounted	$\pm(1.0 \%+0.05 \Omega)$ for J tol
		Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air - Air	$<50 \mathrm{~m} \Omega$ for Jumper
ESD	AEC-Q200 Test I7	Human Body Model,	$\pm(3.0 \%+0.05 \Omega)$
	AEC-Q200-002	$I_{\text {pos. }}+1$ neg. discharges	$<50 \mathrm{~m} \Omega$ for Jumper
		0201: 500V	
		0402/0603: I KV	
		0805 and above: 2 KV	

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	AEC-Q200 Test 18	Electrical Test not required Magnification 50X	Well tinned ($\geq 95 \%$ covered)
	J-STD-002	SMD conditions:	No visible damage
		(a) Method B , aging 4 hours at $155^{\circ} \mathrm{C}$ dry heat, dipping at $235 \pm 3^{\circ} \mathrm{C}$ for 5 ± 0.5 seconds.	
		(b) Method B, steam aging 8 hours, dipping at $215 \pm 3^{\circ} \mathrm{C}$ for 5 ± 0.5 seconds.	
		(c) Method D, steam aging 8 hours, dipping at $260 \pm 3^{\circ} \mathrm{C}$ for 7 ± 0.5 seconds.	
Board Flex	AEC-Q200 Test 21	Chips mounted on a 90 mm glass epoxy resin	$\pm(1.0 \%+0.05 \Omega)$
	AEC-Q200-005	PCB (FR4)	$<50 \mathrm{~m} \Omega$ for Jumper
		$\begin{aligned} & \text { Bending for } 020 \mid / 0402: 5 \mathrm{~mm} \\ & \\ & \text { 0603/0805: } 3 \mathrm{~mm} \\ & \text { \| } 206 \text { and above: } 2 \mathrm{~mm} \end{aligned}$	
		Holding time: minimum 60 seconds	

Temperature	MIL-STD-202 Method 304	At $+25 /-55^{\circ} \mathrm{C}$ and $+25 /+125^{\circ} \mathrm{C}$	Refer to table 2
Coefficient of			
Resistance (T.C.R.)			

Formula:

T.C.R $=\frac{R_{2}-R_{1}}{R_{1}\left(t_{2}-t_{1}\right)} \times 10^{6}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$

Where
$\mathrm{t}_{1}=+25^{\circ} \mathrm{C}$ or specified room temperature
$\mathrm{t}_{2}=-55^{\circ} \mathrm{C}$ or $+125^{\circ} \mathrm{C}$ test temperature
$\mathrm{R}_{1}=$ resistance at reference temperature in ohms
$\mathrm{R}_{2}=$ resistance at test temperature in ohms

Short Time	IEC60I I5-I 4.13	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 sec	$\pm(1.0 \%+0.05 \Omega)$ for D/F tol Overload
	at room temperature	$\leq 5.0 \%+0.05 \Omega)$ for J tol	

FOS ASTM-B-809-95 \quad| Sulfur (saturated vapor) 500 hours, $60 \pm 2^{\circ} \mathrm{C}, \quad \pm(1.0 \%+0.05 \Omega)$ |
| :--- |
| unpowered |

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 8	Mar. 19, 2021	-	- Upgrade the working voltage of 0402 double power to 75V
Version 7	July 10, 2017	-	- Add "3W" part number coding for 13" Reel \& double power
Version 6	May 31, 2017	-	- Add 10" packing
Version 5	Dec. 07, 2015	-	- Add in AC double power
Version 4	May 25, 2015	-	- Remove 7D packing - Extend resistance range - Add in ACO20I - Update FOS test and requirements
Version 3	Feb 13, 2014	-	- Feature description updated - add $\pm 0.5 \%$ - delete 10 " taping reel
Version 2	Feb. 10, 2012	-	- Jumper criteria added - ACI2I8 marking and outline figure updated
Version I	Feb. 01,2011	-	- Case size $1210,1218,2010,2512$ extended - Test method and procedure updated - Packing style of 7D added
Version 0	Nov. 10, 2010	-	- First issue of this specification

LEGAL DISCLAJMER

Yageo, its distributors and agents (collectively, "Yageo"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. Yageo may make changes, modifications and/or improvements to product related information at any time and without notice.

Yageo makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, Yageo disclaims (i) any and all liability arising out of the application or use of any Yageo product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non-infringement and merchantability.

Yageo statements regarding the suitability of products for certain types of applications are based on Yageo's knowledge of typical operating conditions for such types of applications in a generic nature. Such statements are neither binding statements of Yageo nor intended to constitute any warranty concerning the suitability for a specific customer application or use. They are intended for use only by customers with requisite knowledge and experience for determining whether Yageo products are the correct products for their application or use. In addition, unpredicatable and isolated cases of product failure may still occur, therefore, customer application or use of Yageo products which requires higher degree of reliability or safety, shall employ additional protective safeguard measures to ensure that product failure would not result in personal injury or property damage.

Yageo products are not designed for application or use in medical, life-saving, or life-sustaining devices or for any other application or use in which the failure of Yageo products could result in personal injury or death. Customers using or selling Yageo products not expressly indicated for above-mentioned purposes shall do so at their own risk and agree to fully indemnify Yageo and hold Yageo harmless.

Information provided here is intended to indicate product specifications only. Yageo reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

