

Features

- 30 standard frequencies between 1.544 MHz and 49.152 MHz
- 100% pin-to-pin drop-in replacement to quartz-based VCXO
- Frequency stability as tight as ±25 ppm
- Widest pull range options from ±25 ppm to ±200 ppm
- Industrial or extended commercial temperature range
- Superior pull range linearity of ≤1%, 10 times better than quartz
- LVCMOS/LVTTL compatible output
- Four industry-standard packages: 2.5 mm x2.0 mm (4-pin),
 3.2 mm x 2.5mm (4-pin), 5.0 mm x 3.2 mm (6-pin), 7.0 mm x 5.0 mm (6-pin)
- Instant samples with Time Machine II and field programmable oscillators
- RoHS and REACH compliant, Pb-free, Halogen-free and Antimony-free

Electrical Specifications Table 1. Electrical Characteristics^[1, 2, 3]

Applications

- Telecom clock synchronization, instrumentation
- Low bandwidth analog PLL, jitter cleaner, clock recovery, audio
- Video, 3G/HD-SDI, FPGA, broadband and networking

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
			Frec	uency Ran	ge	
Output Frequency Range	f	1.544	-	49.152	MHz	Refer to Table 11 for the exact list of supported frequencies
			Frequency	Stability a	nd Aging	1
Frequency Stability	F_stab	-25	-	+25	ppm	Inclusive of Initial tolerance ^[4] at 25 °C, and variation over
		-50	-	+50	ppm	temperature, rated supply voltage and load.
Aging	F_aging	-5	-	+5	ppm	10 years, 25°C
Operating Temperature Range	T_use	-20	-	+70	°C	Extended Commercial
		-40	-	+85	°C	Industrial
			oly Voltage a			nption
Supply Voltage	Vdd	1.71	1.8	1.89	V	
		2.25	2.5	2.75	V	Additional supply voltages between 2.5V and 3.3V can be
		2.52	2.8	3.08	V	supported. Contact SiTime for additional information.
		2.97	3.3	3.63	V	
Current Consumption	ldd	-	31	33	mA	No load condition, f = 20 MHz, Vdd = 2.5V, 2.8V or 3.3V
		-	29	31	mA	No load condition, f = 20 MHz, Vdd = 1.8V
Standby Current	I_std	-	-	70	μA	Vdd = 2.5V, 2.8V, 3.3V, ST = GND, output is Weakly Pulled Down
		-	-	10	μA	Vdd = 1.8V, \overline{ST} = GND, output is Weakly Pulled Down
			VCXO	Characteri	stics	
Pull Range ^[5, 6]	PR	±25, ±50, ±100, ±150, ±200		ppm	See the Absolute Pull Range and APR table on page 10	
Upper Control Voltage	VC_U	1.7	-	-	V	Vdd = 1.8V, Voltage at which maximum deviation is guaranteed.
		2.4	-	-	V	Vdd = 2.5V, Voltage at which maximum deviation is guaranteed.
		2.7	-	-	V	Vdd = 2.8V, Voltage at which maximum deviation is guaranteed.
		3.2	-	-	V	Vdd = 3.3V, Voltage at which maximum deviation is guaranteed.
Lower Control Voltage	VC_L	-	-	0.1	V	Voltage at which minimum deviation is guaranteed.
Control Voltage Input Impedance	Z_in	100	-	-	kΩ	
Control Voltage Input Capacitance	C_in	-	5	-	pF	
Linearity	Lin	-	0.1	1	%	
Frequency Change Polarity	-		Positive slop	e	-	
Control Voltage Bandwidth (-3dB)	V_BW	-	8	-	kHz	Contact SiTime for 16 kHz and other high bandwidth options
			LVCMOS O	utput Chara	acteristic	S
Duty Cycle	DC	45	-	55	%	All Vdds. Refer to Note 11 for definition of Duty Cycle
Rise/Fall Time	Tr, Tf	-	1.5	2	ns	Vdd = 1.8V, 2.5v, 2.8V or 3.3V, 10% - 90% Vdd level
Output High Voltage	VOH	90%	-	_	Vdd	IOH = -7 mA (Vdd = 3.0V or 3.3V) IOH = -4 mA (Vdd = 2.8V or 2.5V) IOH = -2 mA (Vdd = 1.8V)
Output Low Voltage	VOL	-	-	10%	Vdd	IOL = 7 mA (Vdd = 3.0V or 3.3V) IOL = 4 mA (Vdd = 2.8V or 2.5V) IOL = 2 mA (Vdd = 1.8V)

Electrical Specifications (continued) Table 1. Electrical Characteristics^[1, 2, 3]

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition			
Input Characteristics									
Input Pull-up Impedance	Z_in	-	100	250	kΩ	For the OE/ST pin for 6-pin devices			
Input Capacitance	C_in	-	5	-	PF	For the OE/ST pin for 6-pin devices			
	Startup and Resume Timing								
Startup Time	T_start	-	-	10	ms	See Figure 7 for startup resume timing diagram			
OE Enable/Disable Time	T_oe	-	-	180	ns	f = 40 MHz, all Vdds. For other freq, T_oe = 100 ns + 3 clock periods			
Resume Time	T_resume	-	7	10	ms	See Figure 8 for resume timing diagram			
				Jitter		•			
RMS Period Jitter	T_jitt	-	1.5	2	ps	f = 20 MHz, Vdd = 2.5V, 2.8V or 3.3V			
		-	2	3	ps	f = 20 MHz, Vdd = 1.8V			
RMS Phase Jitter (random)	T_phj	-	0.5	1	ps	f = 20 MHz, Integration bandwidth = 12 kHz to 20 MHz, All Vdds			

Notes:

1. All electrical specifications in the above table are specified with 15 pF output load and for all Vdd(s) unless otherwise stated.

2. The typical value of any parameter in the Electrical Characteristics table is specified for the nominal value of the highest voltage option for that parameter and at 25 °C temperature.

3. All max and min specifications are guaranteed across rated voltage variations and operating temperature ranges, unless specified otherwise

4. Initial tolerance is measured at Vin = Vdd/2

Absolute Pull Range (APR) is defined as the guaranteed pull range over temperature and voltage.
 APR = pull range (PR) - frequency stability (F_stab) - Aging (F_aging)

Table 2. Pin Description. 4-Pin Configuration

(For 2.5 x 2.0 mm and 3.2 x 2.5 mm packages)

Pin	Symbol	Functionality				
1	VIN	Input	0-Vdd: produces voltage dependent frequency change			
2	GND	Power	Electrical ground ^[7]			
3	CLK	Power	Power supply voltage			
4	VDD	Input Power	Oscillator output power			

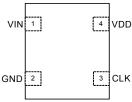


Figure 1.

Top View

Note:

7. A capacitor value of 0.1 µF between Vdd and GND is recommended.

Table 3. Pin Description. 6-Pin Configuration

(For 5.0 x 3.2 mm and 7.0 x 5.0 mm packages)

Pin	Symbol		Functionality	Top View
1	VIN	Input	VCO control voltage	
		No Connect	H or L or Open: No effect on output frequency or other device functions	VIN 1 6 VDD
2	NC/OE/ ST	Output Enable	H or Open ^[8] : specified frequency output L: output is high	NC/OE/ST 2 5 NC
		Standby	H or Open ^[8] : specified frequency output L: output is low (weak pull down) ^[9] . Oscillation stops	GND 3 4 CLK
3	GND	Power	Electrical ground ^[10]	
4	CLK	Output	Oscillator output	
5	NC	No Connect	H or L or Open: No effect on output frequency or other device functions	Figure 2.
6	VDD	Power	Power supply voltage	

Notes:

8. In OE or ST mode, a pull-up resistor of 10 kΩ or less is recommended if pin 2 in the 6-pin package is not externally driven. If pin 2 needs to be left floating, use the NC option

9. Typical value of the weak pull-down impedance is 5 m Ω 10. A capacitor value of 0.1 μF between Vdd and GND is recommended.

Table 4. Absolute Maximum Limits

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Min.	Max.	Unit
Storage Temperature	-65	150	°C
VDD	-0.5	4	V
Electrostatic Discharge	-	2000	V
Soldering Temperature (follow standard Pb free soldering guidelines)	-	260	°C

Table 5. Thermal Consideration

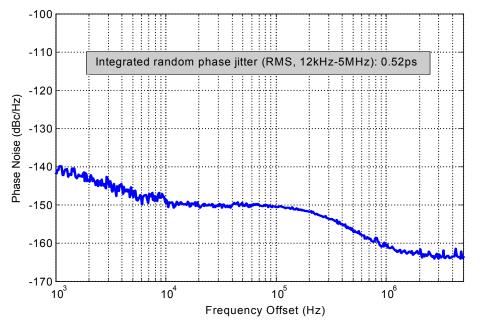

Parameter	θJA, 4 Layer Board (°C/W)	θJA, 2 Layer Board (°C/W)	θJC, Bottom (°C/W)
7050	191	263	30
5032	97	199	24
3225	109	212	27
2520	117	222	26

Table 6. Environmental Compliance

Parameter	Condition/Test Method			
Mechanical Shock	MIL-STD-883F, Method 2002			
Mechanical Vibration	MIL-STD-883F, Method 2007			
Temperature Cycle	JESD22, Method A104			
Solderability	MIL-STD-883F, Method 2003			
Moisture Sensitivity Level	MSL1 @ 260°C			

Phase Noise Plot

Test Circuit and Waveform

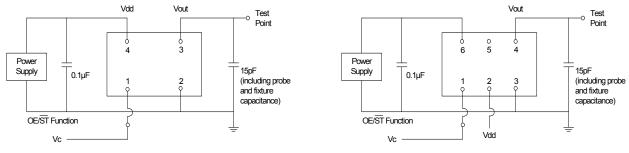
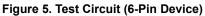
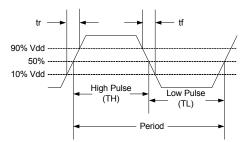
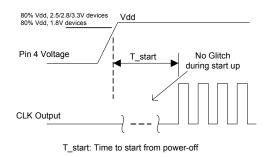
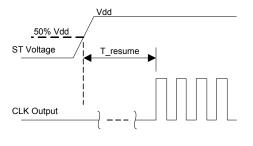



Figure 4. Test Circuit (4-Pin Device)




Figure 6. Waveform


Note:

- 11. Duty Cycle is computed as Duty Cycle = TH/Period.
- 12. SiT3807 supports the configurable duty cycle feature. For custom duty cycle at any given frequency, contact SiTime.

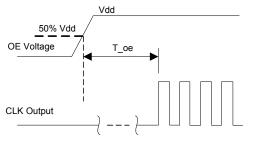
Timing Diagram

T_resume: Time to resume from ST

50% Vdd

T_oe

НŻ


Figure 8. Standby Resume Timing (ST Mode Only)

Vdd

OE Voltage

CLK Output

Figure 7. Startup Timing (OE/ST Mode)

T_oe: Time to re-enable the clock output

Figure 9. OE Enable Timing (OE Mode Only)

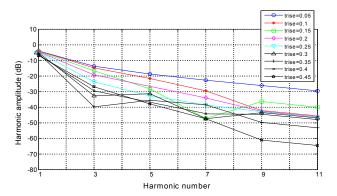
Figure 10. OE Disable Timing (OE Mode Only)

Notes:

13. SiT3807 supports "no runt" pulses and "no glitch" output during startup or resume.

14. SiT3807 supports gated output which is accurate within rated frequency stability from the first cycle.

Programmable Drive Strength


The SiT3807 includes a programmable drive strength feature to provide a simple, flexible tool to optimize the clock rise/fall time for specific applications. Benefits from the programmable drive strength feature are:

- Improves system radiated electromagnetic interference (EMI) by slowing down the clock rise/fall time
- Improves the downstream clock receiver's (RX) jitter by decreasing (speeding up) the clock rise/fall time.
- Ability to drive large capacitive loads while maintaining full swing with sharp edge rates.

For more detailed information about rise/fall time control and drive strength selection, see the SiTime Application Notes section; <u>http://www.sitime.com/support/application-notes.</u>

EMI Reduction by Slowing Rise/Fall Time

Figure 11 shows the harmonic power reduction as the rise/fall times are increased (slowed down). The rise/fall times are expressed as a ratio of the clock period. For the ratio of 0.05, the signal is very close to a square wave. For the ratio of 0.45, the signal is very close to near-triangular waveform. These results, for example, show that the 11th clock harmonic can be reduced by 35 dB if the rise/fall edge is increased from 5% of the period to 45% of the period.

Figure 11. Harmonic EMI reduction as a Function of Slower Rise/Fall Time

Jitter Reduction with Faster Rise/Fall Time

Power supply noise can be a source of jitter for the downstream chipset. One way to reduce this jitter is to increase rise/fall time (edge rate) of the input clock. Some chipsets would require faster rise/fall time in order to reduce their sensitivity to this type of jitter. Refer to the Rise/Fall Time Tables to determine the proper drive strength.

High Output Load Capability

The rise/fall time of the input clock varies as a function of the actual capacitive load the clock drives. At any given drive strength, the rise/fall time becomes slower as the output load increases. As an example, for a 3.3V SiT3807 device with default drive strength setting, the typical rise/fall time is 1.15ns for 15 pF output load. The typical rise/fall time slows down to 2.72ns when the output load increases to 45 pF. One can choose to speed up the rise/fall time to 1.41ns by then increasing the drive strength setting to P on the SiT3807.

The SiT3807 can support up to 60 pF maximum capacitive loads. Refer to the Rise/Tall Time Tables to determine the proper drive strength for the desired combination of output load vs. rise/fall time

SiT3807 Drive Strength Selection

Tables 7 through 10 define the rise/fall times for a given capacitive load and supply voltage.

- 1. Select the table that matches the SiT3807 nominal supply voltage (1.8V, 2.5V, 2.8V, 3.3V).
- 2. Select the capacitive load column that matches the application requirement (5 pF to 60 pF)
- 3. Under the capacitive load column, select the desired rise/fall times.
- 4. The left-most column represents the part number code for the corresponding drive strength.
- 5. Add the drive strength code to the part number for ordering purposes.

Calculating Maximum Frequency

Based on the rise and fall time data given in Tables 7 through 10, the maximum frequency the oscillator can operate with guaranteed full swing of the output voltage over temperature can be calculated as follows:

Max Frequency =
$$\frac{1}{3.5 \times \text{Trf}_{10/90}}$$

Where Trf_10/90 is the typical rise/fall time at 10% to 90% Vdd.

Example 1

Ν

Calculate f_{MAX} for the following condition:

- Vdd = 3.3V (Table 10)
- · Capacitive Load: 30 pF
- Typical Tr/f time = 1.66 ns (drive strength part number code = G)

Part number for the above example:

SiT3807AIGG2-33EH-49.152000

Drive strength code is inserted here. Default setting is "-"

Rise/Fall Time (10% to 90%) vs $\rm C_{\rm LOAD}$ Tables

Rise/Fall Time Typ (ns)							
Drive Strength \ C _{LOAD}	5 pF	15 pF	30 pF	45 pF	60 pF		
L	12.45	17.68	19.48	46.21	57.82		
Α	6.50	10.27	16.21	23.92	30.73		
R	4.38	7.05	11.61	16.17	20.83		
В	3.27	5.30	8.89	12.18	15.75		
S	2.62	4.25	7.20	9.81	12.65		
D	2.19	3.52	6.00	8.31	10.59		
Т	1.76	3.01	5.14	7.10	9.15		
E	1.59	2.59	4.49	6.25	7.98		
U	1.49	2.28	3.96	5.55	7.15		
F	1.22	2.10	3.57	5.00	6.46		
W	1.07	1.88	3.23	4.50	5.87		
G	1.01	1.64	2.95	4.12	5.40		
Х	0.96	1.50	2.74	3.80	4.98		
К	0.92	1.41	2.56	3.52	4.64		
Y	0.88	1.34	2.39	3.25	4.32		
Q	0.86	1.29	2.24	3.04	4.06		
Z or "-": Default	0.82	1.24	2.07	2.89	3.82		
М	0.77	1.20	1.94	2.72	3.61		
N	0.66	1.15	1.84	2.58	3.41		
Р	0.51	1.09	1.76	2.45	3.24		

Rise/Fall Time Typ (ns)								
Drive Strength \ C _{LOAD}	5 pF	15 pF	30 pF	45 pF	60 pF			
L	8.68	13.59	18.36	32.70	42.06			
Α	4.42	7.18	11.93	16.60	21.38			
R	2.93	4.78	8.15	11.19	14.59			
В	2.21	3.57	6.19	8.55	11.04			
S	1.67	2.87	4.94	6.85	8.80			
D	1.50	2.33	4.11	5.68	7.33			
Т	1.06	2.04	3.50	4.84	6.26			
E	0.98	1.69	3.03	4.20	5.51			
U	0.93	1.48	2.69	3.73	4.92			
F	0.90	1.37	2.44	3.34	4.42			
W	0.87	1.29	2.21	3.04	4.02			
G or "-": Default	0.67	1.20	2.00	2.79	3.69			
X	0.44	1.10	1.86	2.56	3.43			
К	0.38	0.99	1.76	2.37	3.18			
Y	0.36	0.83	1.66	2.20	2.98			
Q	0.34	0.71	1.58	2.07	2.80			
Z	0.33	0.65	1.51	1.95	2.65			
М	0.32	0.62	1.44	1.85	2.50			
N	0.31	0.59	1.37	1.77	2.39			
Р	0.30	0.57	1.29	1.70	2.28			

Table 9. Vdd = 2.8V Rise/Fall Times for Specific C_{LOAD}

	Rise/Fall	Time Typ	(ns)		
Drive Strength \ C _{LOAD}	5 pF	15 pF	30 pF	45 pF	60 pF
L	7.93	12.69	17.94	30.10	38.89
Α	4.06	6.66	11.04	15.31	19.80
R	2.68	4.40	7.53	10.29	13.37
В	2.00	3.25	5.66	7.84	10.11
S	1.59	2.57	4.54	6.27	8.07
D	1.19	2.14	3.76	5.21	6.72
Т	1.00	1.79	3.20	4.43	5.77
E	0.94	1.51	2.78	3.84	5.06
U	0.90	1.38	2.48	3.40	4.50
F	0.87	1.29	2.21	3.03	4.05
W	0.62	1.19	1.99	2.76	3.68
G or "-": Default	0.41	1.08	1.84	2.52	3.36
Х	0.37	0.96	1.72	2.33	3.15
К	0.35	0.78	1.63	2.15	2.92
Y	0.33	0.67	1.54	2.00	2.75
Q	0.32	0.63	1.46	1.89	2.57
Z	0.31	0.60	1.39	1.80	2.43
М	0.30	0.57	1.31	1.72	2.30
N	0.30	0.56	1.22	1.63	2.22
Р	0.29	0.54	1.13	1.55	2.13

Table 10. Vdd = 3.3V Rise/Fal	Times for Specific C _{LOAD}
-------------------------------	--------------------------------------

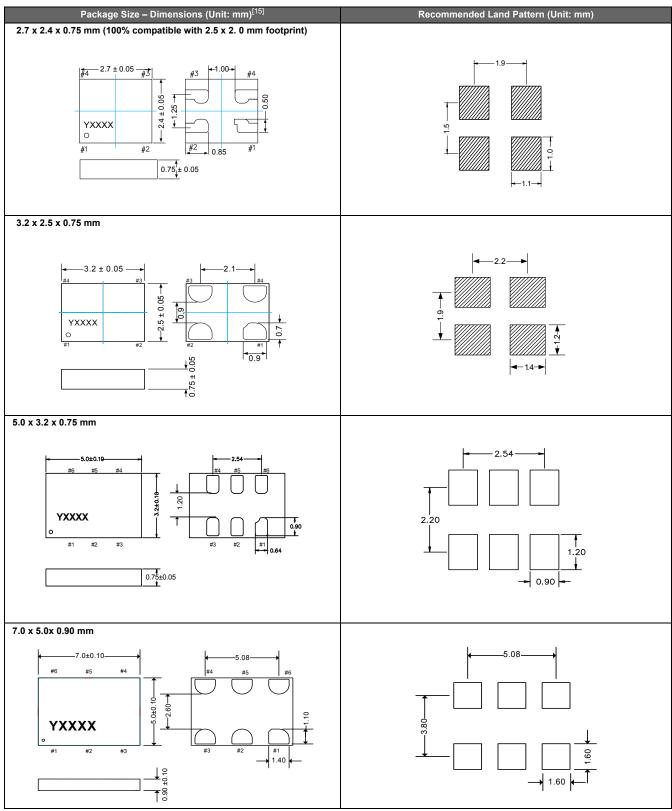
Rise/Fall Time Typ (ns)							
Drive Strength \ C _{LOAD}	5 pF	15 pF	30 pF	45 pF	60 pF		
L	7.18	11.59	17.24	27.57	35.57		
Α	3.61	6.02	10.19	13.98	18.10		
R	2.31	3.95	6.88	9.42	12.24		
В	1.65	2.92	5.12	7.10	9.17		
S	1.43	2.26	4.09	5.66	7.34		
D	1.01	1.91	3.38	4.69	6.14		
Т	0.94	1.51	2.86	3.97	5.25		
E	0.90	1.36	2.50	3.46	4.58		
U	0.86	1.25	2.21	3.03	4.07		
F or "-": Default	0.48	1.15	1.95	2.72	3.65		
W	0.38	1.04	1.77	2.47	3.31		
G	0.36	0.87	1.66	2.23	3.03		
Х	0.34	0.70	1.56	2.04	2.80		
К	0.33	0.63	1.48	1.89	2.61		
Y	0.32	0.60	1.40	1.79	2.43		
Q	0.32	0.58	1.31	1.69	2.28		
Z	0.30	0.56	1.22	1.62	2.17		
М	0.30	0.55	1.12	1.54	2.07		
N	0.30	0.54	1.02	1.47	1.97		
Р	0.29	0.52	0.95	1.41	1.90		

Instant Samples with Time Machine and Field Programmable Oscillators

SiTime supports a field programmable version of the SiT3807 low power oscillator for fast prototyping and real time customization of features. The <u>field programmable devices</u> (FP devices) are available for all four standard SiT3807 package sizes and can be configured to one's exact specification using the <u>Time Machine II</u>, an USB powered MEMS oscillator programmer.

Customizable Features of the SiT3807 FP Devices Include

- 30 standard frequencies
- Two frequency stability options: ±25 ppm, ±50 ppm
- Two operating temperatures: -20 to 70°C or -40 to 85°C
- Four supply voltage options: 1.8V, 2.5V, 2.8V, and 3.3V
- Five pull range options: ±25 ppm, ±50 ppm, ±100 ppm, ±150 ppm, ±200 ppm


For more information regarding SiTime's field programmable solutions, visit <u>http://www.sitime.com/time-machine</u> and <u>http://www.sitime.com/fp-devices</u>.

SiT3807 is typically factory-programmed per customer ordering codes for volume delivery.

SiT3807 Standard Frequency MEMS VCXO

Dimensions and Patterns

Note:

15. Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y" will depend on the assembly location of the device.

Ordering Information

	3EH-49.152000D
Part Family "SiT3807" Revision Letter "A" is the revision Temperature Range	Packing Method "T": 12 mm Tape & Reel, 3ku reel "Y": 12 mm Tape & Reel, 1ku reel "D": 8 mm Tape & Reel, 3ku reel "E": 8 mm Tape & Reel, 1ku reel Blank for Bulk
"C" Commercial, -20 to 70°C "I" Industrial, -40 to 85°C	See Supported Frequencies Table
Output Drive Strength "-" Default (datasheet limits) See rise/fail tables on page 7 "L" "S" "U" "X" "Z" "A" "D" "F" "K" "M" "R" "T" "W" "Y" "N" "B" "F" "G" "Q" "P"	Pull Range Options "M" for ±25 ppm "B" for ±50 ppm "E" for ±100 ppm "G" for ±150 ppm "H" for ±200 ppm
Package "G" 2.5 x 2.0 mm x mm "2" 4-pin, 3.2 x 2.5 mm x mm "C" 6-pin, 5.0 x 3.2 mm x mm "D" 6-pin, 7.0 x 5.0 mm x mm	Feature Pin "N" for No Connect in 6-pin devices Default value in 4-pin device "E" for Output Enable (6-pin only) "S" for Standby (6-pin only)
Frequency Stability "2" for ±25 ppm	Supply Voltage "18" for 1.8 V ±5% "25" for 2.5 V ±10%
"3" for ±50 ppm	"28" for 2.8 V ±10% "33" for 3.3 V ±10%

Table 11. Supported Frequencies

1.544000 MHz	4.096000 MHz	6.176000 MHz	8.000000 MHz	8.192000 MHz	10.000000 MHz	11.289600 MHz	12.288000 MHz	12.352000 MHz
13.500000 MHz	16.000000 MHz	16.348000 MHz	16.8 MHz	19.440000 MHz	20.000000 MHz	24.576000 MHz	24.700000 MHz	25.000000 MHz
25.576000 MHz	27.000000 MHz	30.000000 MHz	31.720000 MHz	32.000000 MHz	32.768000 MHz	35.328000 MHz	38.880000 MHz	39.322000 MHz
40.000000 MHz	44.736000 MHz	49.152000 MHz						

Table 12. APR Definition

Absolute pull range (APR) = Norminal pull range (PR) - frequency stability (F_stab) - Aging (F_aging)

APR

	Frequency Stability		
Nominal Pull Range	± 25 ± 50		
	APR (PPM)		
± 25	-	-	
± 50	± 20	-	
± 100	± 70	± 45	
± 150	± 120	± 95	
± 200	± 170	± 145	

Table 13. Ordering Codes for Supported Tape & Reel Packing Method^[16]

Device Size	12 mm T&R (3ku)	12 mm T&R (1ku)	8 mm T&R (3ku)	8 mm T&R (1ku)
2.5 x 2.0 mm	-	-	D	E
3.2 x 2.5 mm	-	-	D	E
5.0 x 3.2 mm	Т	Y	-	-
7.0 x 5.0 mm	Т	Y	-	-

Note:

16. "-" indicates "not available."

Best Reliability

Silicon is inherently more reliable than quartz. Unlike quartz suppliers, SiTime has in-house MEMS and analog CMOS expertise, which allows SiTime to develop the most reliable products. Figure 1 shows a comparison with quartz technology.

Why is SiTime Best in Class:

- SiTime's MEMS resonators are vacuum sealed using an advanced EpiSeal[™] process, which eliminates foreign particles and improves long term aging and reliability
- · World-class MEMS and CMOS design expertise

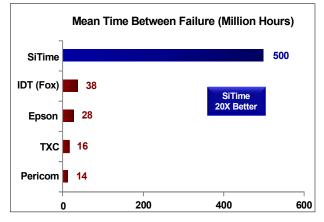


Figure 1. Reliability Comparison^[1]

Best Aging

Unlike quartz, MEMS oscillators have excellent long term aging performance which is why every new SiTime product specifies 10-year aging. A comparison is shown in Figure 2.

Why is SiTime Best in Class:

- SiTime's MEMS resonators are vacuum sealed using an advanced EpiSeal process, which eliminates foreign particles and improves long term aging and reliability
- Inherently better immunity of electrostatically driven MEMS resonator

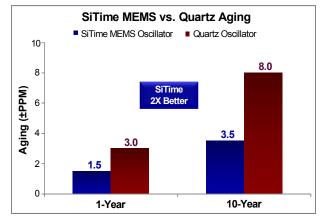


Figure 2. Aging Comparison^[2]

Best Electro Magnetic Susceptibility (EMS)

SiTime's oscillators in plastic packages are up to 54 times more immune to external electromagnetic fields than quartz oscillators as shown in Figure 3.

Why is SiTime Best in Class:

- Internal differential architecture for best common mode noise rejection
- Electrostatically driven MEMS resonator is more immune to EMS

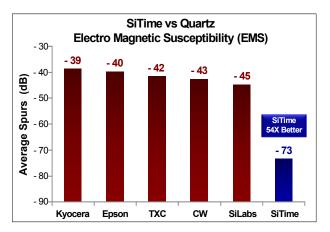


Figure 3. Electro Magnetic Susceptibility (EMS)^[3]

Best Power Supply Noise Rejection

SiTime's MEMS oscillators are more resilient against noise on the power supply. A comparison is shown in Figure 4.

Why is SiTime Best in Class:

- On-chip regulators and internal differential architecture for common mode noise rejection
- · Best analog CMOS design expertise

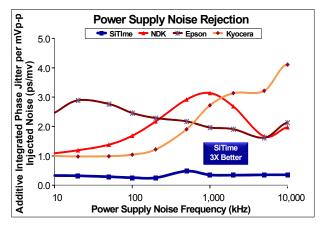


Figure 4. Power Supply Noise Rejection^[4]

Best Vibration Robustness

High-vibration environments are all around us. All electronics, from handheld devices to enterprise servers and storage systems are subject to vibration. Figure 5 shows a comparison of vibration robustness.

Why is SiTime Best in Class:

- The moving mass of SiTime's MEMS resonators is up to 3000 times smaller than quartz
- Center-anchored MEMS resonator is the most robust design

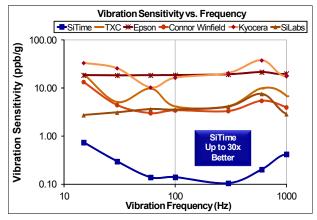


Figure 5. Vibration Robustness^[5]

Notes:

- 1. Data Source: Reliability documents of named companies.
- 2. Data source: SiTime and quartz oscillator devices datasheets.
- 3. Test conditions for Electro Magnetic Susceptibility (EMS):
 - According to IEC EN61000-4.3 (Electromagnetic compatibility standard)
 Field strength: 2//m
 - Field strength: 3V/m
 - Radiated signal modulation: AM 1 kHz at 80% depth
 - Carrier frequency scan: 80 MHz 1 GHz in 1% steps
 - Antenna polarization: Vertical
 - DUT position: Center aligned to antenna

Devices used in this test:

SiTime, SiT9120AC-1D2-33E156.250000 - MEMS based - 156.25 MHz Epson, EG-2102CA 156.2500M-PHPAL3 - SAW based - 156.25 MHz TXC, BB-156.250MBE-T - 3rd Overtone quartz based - 156.25 MHz Kyocera, KC7050T156.250P30E00 - SAW based - 156.25 MHz Connor Winfield (CW), P123-156.25M - 3rd overtone quartz based - 156.25 MHz SiLabs, Si590AB-BDG - 3rd overtone quartz based - 156.25 MHz

4. 50 mV pk-pk Sinusoidal voltage.

Devices used in this test:

SiTime, SiT8208AI-33-33E-25.000000, MEMS based - 25 MHz NDK, NZ2523SB-25.6M - quartz based - 25.6 MHz

- Kyocera, KC2016B25M0C1GE00 quartz based 25 MHz
- Epson, SG-310SCF-25M0-MB3 quartz based 25 MHz
- 5. Devices used in this test: same as EMS test stated in Note 3.
- 6. Test conditions for shock test:
- MIL-STD-883F Method 2002
- Condition A: half sine wave shock pulse, 500-g, 1ms
- Continuous frequency measurement in 100 µs gate time for 10 seconds
- Devices used in this test: same as EMS test stated in Note 3

7. Additional data, including setup and detailed results, is available upon request to qualified customers. Please contact

Best Shock Robustness

SiTime's oscillators can withstand at least 50,000 g shock. They all maintain their electrical performance in operation during shock events. A comparison with quartz devices is shown in Figure 6.

Why is SiTime Best in Class:

- The moving mass of SiTime's MEMS resonators is up to 3000 times smaller than quartz
- Center-anchored MEMS resonator is the most robust design

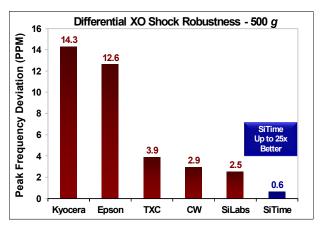


Figure 6. Shock Robustness^[6]