

Current Transducer LF 505-S/SP23

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

PRANT

Electrical data

I _{PN} I _P R _M	Primary current, mea	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		500 0 \pm 1000 $\mathbf{R}_{M \text{ min}}$ $\mathbf{R}_{M \text{ max}}$	
	with ± 24 V	$@ \pm 500 \text{ A}_{max}$ $@ \pm 1000 \text{ A}_{max}$	0 0	114 9	Ω
I _{SN} K _N V _C I _C V _d	Secondary nominal r.m.s. current Conversion ratio Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		100 1:500 ± 24 34 + I _s 6 1) 0.5 2)	00	mA V mA kV kV

Accuracy - Dynamic performance data

$\overset{\boldsymbol{x}}{\boldsymbol{\epsilon}_{\scriptscriptstyle{L}}}$	Overall accuracy @ $\mathbf{I}_{PN,}$ $\mathbf{T}_{A} = 25^{\circ}C$ Linearity error	± 0.	-	% %
Ι _ο Ι _{οτ}	Offset current @ $I_P = 0$, $T_A = 25$ °C Thermal drift of I_O - 40°	C + 85°C	p Max ± 0.4 .3 ± 0.8	
t _, di/dt f	Response time ³⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (-1 dB)	< 1 > 1 DC	00 100	μs A/μs kHz

General data

Т.	Ambient operating temperature	- 40 + 85	°C	
T _s	Ambient storage temperature	- 45 + 90	°C	
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 85°C	96	Ω	
m	Mass	230	g	
	Standards	EN 50155 (95.	EN 50155 (95.11.01)	
		FN 50178 (97.10 (

Notes : 1) Between primary and secondary + shield insulation voltage of the cable confirmed by Huber & Suhner

- 2) Between secondary and shield
- 3) With a di/dt of 100 A/µs.

$I_{DN} = 500 \text{ A}$

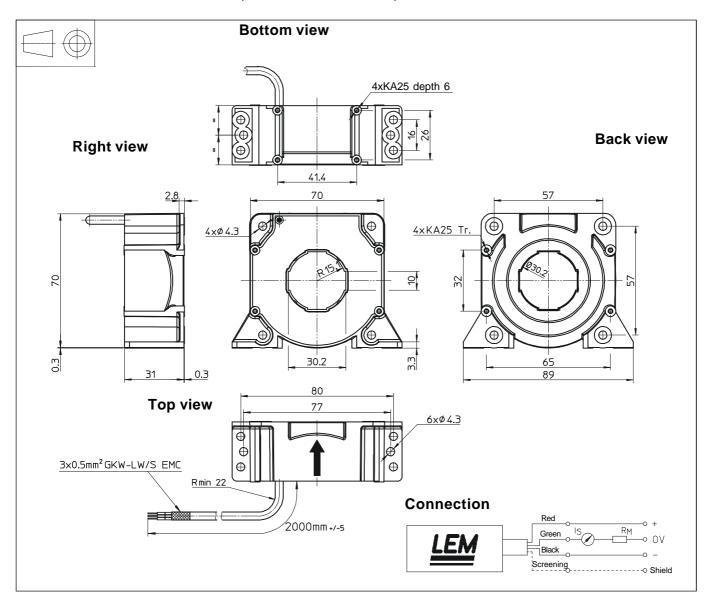
Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_p = 0 .. \pm 1000 A$
- $V_{c} = \pm 24 \ (\pm 5 \%) \ V$
- \bullet **T**₀ = -40°C .. +85°C
- Shield between primary and secondary
- Connection to secondary on screened cable 3 x 0.5 mm².

Advantages


- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Dimensions LF 505-S/SP23 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.5 mm

• Transducer fastening

Vertical or flat lying position $4 \text{ or } 6 \text{ holes } \varnothing 4.3 \text{ mm}$

4 or 6 steel screws M4

Recommended fastening torque 3.2 Nm or 2.36 Lb.-Ft.

Or vertical position 4 holes Ø 1.9 mm, Depth:6 mm

4 screws PTKA 25, length: 6 mm

Recommended fastening torque 0.7 Nm or 0.52 Lb.-Ft.

Or flat lying position 4 holes \varnothing 1.9 mm, crossing

4screws PTKA25, length: 10 mm

Recommended fastening torque 0.75 Nm or 0.55 Lb.-Ft.

• Primary through-hole Ø 30.2 mm

Connection of secondary screened cable 3 x 0.5 mm²

Remarks

- \bullet I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.