

Current Transducer LF 505-S/SP22

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	Primary nominal r.m.s. current Primary current, measuring range @ ±24 V Measuring resistance		500 (630/10 sec.) A 0 ± 1200 A $R_{M \text{ min}}$ $R_{M \text{ max}}$		
	with ± 15 V	@ $\pm 500 A_{max}$	0	31	Ω
		@ $\pm 740 A_{max}$	0	3	Ω
	with ± 24 V	@ ± 500 A _{max}	3	90	Ω
		@ ± 1000 A _{max}	3	17	Ω
		@ ± 1200 A max	3	5	Ω
I _{SN}	Secondary nominal r.m.s.	current	143		mΑ
K _N	Conversion ratio		1:3500	1	
v _c	Supply voltage (± 5 %) ²⁾		± 15 2	24	V
Ic	Current consumption		30 (@ ± 2	4V)+ I _S	mΑ

Accuracy - Dynamic performance data

X _G	Overall accuracy @ I_{PN} , $T_A = 25$ °C Linearity error		± 0.6 < 0.1		% %
I _o	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O	- 25°C + 70°C - 40°C + 70°C	1 1	Max ± 0.45 ± 0.50 ± 0.80	mΑ
t _, di/dt f	Response time ¹⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 100 DC 1	00	μs Α/μs kHz

General data

T_A	Ambient operating temperature	- 40 + 70	°C	
$T_{\rm s}$	Ambient storage temperature	- 40 + 85	°C	
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	56	Ω	
m	Mass	230	g	
	Standards	EN 50155 : 19	EN 50155 : 1995	

Notes: 1) With a di/dt of 100 A/µs

²⁾ With $V_C = \pm 24 \text{ V } (\pm 3 \text{ \%}) R_{M \text{ min}} = 1.6 \Omega$.

500 A

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

• $I_p = 0.. \pm 1200 \text{ A}$

• $\mathbf{K}_{N} = 1:3500$

• $V_C = \pm 15 ... 24 (\pm 5\%) V^{2)}$

• $T_{A} = -40^{\circ}C... + 70^{\circ}C$

• Connection to secondary circuit on M4 threaded studs.

Advantages

- Excellent accuracy
- · Very good linearity
- · Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- Single or three phases inverter
- Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- · Battery charger.

Application Domain

• Traction.

Current Transducer LF 505-S/SP22

Isolation characteristics				
\mathbf{V}_{d}	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn	4	kV	
dCp dCl CTI	Creepage distance ³⁾ Clearance distance ³⁾ Comparative Tracking Index (Group III a)	Min 29.5 26.5 175	mm mm	

Note: 3) Distance between "A" and "B" see outline drawing.

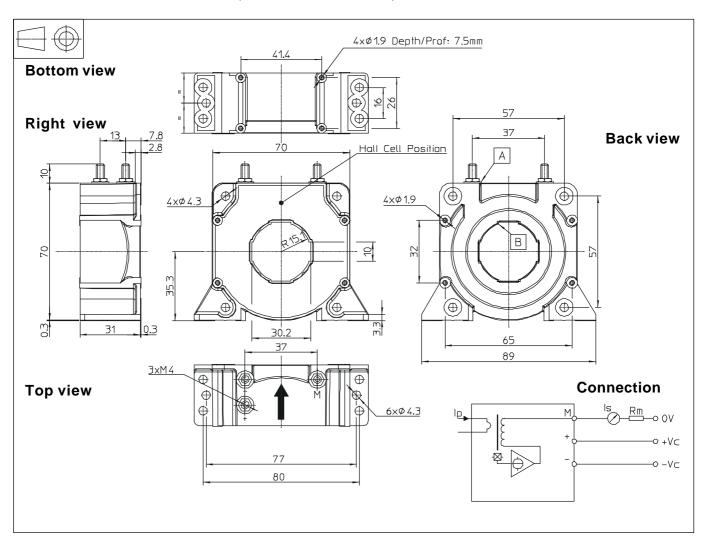
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions LF 505-S/SP22 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.5 mm

Transducer fastening

Vertical or horizontal position $4 \text{ or } 6 \text{ holes } \varnothing 4.3 \text{ mm}$

4 or 6 M4 steel screws

Recommended fastening torque

3.2 Nm or 2.37 Lb. - Ft.

or

Vertical position 4 holes \varnothing 1.9 mm depth: 7.5 mm

4xPTKA25 screws long:6 mm 0.7 Nm or 0.52 Lb. - Ft.

Recommended fastening torque

Horizontal position 4 traversing holes Ø 1.9 mm

4xPTKA25screwslong:10mm

0.75 Nm or 0.55 Lb. - Ft. Recommended fastening torque

• Primary through-hole Ø 30.2 mm M4 threaded studs · Connection of secondary Recommended fastening torque 1.2 Nm or 0.88 Lb. - Ft.

Remarks

- Is positive when Is flows in the direction of the arrow
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

060628/4